
Autonomous AI and Autonomous Agents Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2025-2034
Description
The Global Autonomous AI and Autonomous Agents Market was valued at USD 6.84 billion in 2024 and is estimated to grow at a CAGR of 30.3%, reaching USD 93.7 billion by 2034, driven by the increasing demand for intelligent automation, real-time data processing, and AI-powered decision-making across industries. Autonomous AI and agents represent a transformative technology capable of operating independently, learning from their environments, and executing complex tasks with minimal human intervention. Their ability to analyze vast datasets, adapt to dynamic conditions, and make real-time decisions reshape sectors such as healthcare, finance, manufacturing, and transportation.
The rapid integration of machine learning, natural language processing (NLP), and computer vision technologies is enhancing the sophistication and capabilities of autonomous systems. Enterprises are adopting these solutions to automate repetitive processes, optimize operations, increase customer experiences, and achieve greater operational efficiency. Additionally, breakthroughs in edge computing, generative AI models like GPT and DALL·E, and reinforcement learning are expanding the scope of autonomous applications into robotics, smart cities, autonomous vehicles, and personalized healthcare. The shift toward Industry 4.0, the rise of smart factories, and the growing reliance on predictive maintenance and AI-driven supply chains propel market growth. Furthermore, regulatory initiatives such as the EU's Artificial Intelligence Act and the U.S. National AI Initiative are promoting responsible AI deployment, boosting innovation, and encouraging broader adoption across sectors.
The Autonomous AI and Autonomous Agents Market is primarily segmented by component, with the software segment generating USD 4.58 billion in 2024. Software solutions, including autonomous decision-making platforms, intelligent automation frameworks, and AI-driven analytics, are at the heart of modern AI ecosystems, enabling organizations to unlock deeper insights, automate workflows, and achieve faster, data-driven decision-making. The surge in demand for cloud-based AI software and AI-as-a-Service (AIaaS) platforms is further driving the dominance of the software segment.
In terms of technology, the machine learning segment generated USD 2.41 billion in 2024. Machine learning algorithms enable autonomous agents to continuously improve performance by learning from data patterns and real-world experiences. The growing use of machine learning in fraud detection, predictive analytics, autonomous navigation, and personalized healthcare enhances the adoption of intelligent, self-learning systems across industries.
In terms of industry verticals, the BFSI (Banking, Financial Services, and Insurance) segment generated USD 963.0 million in 2024. BFSI institutions adopt autonomous AI solutions to drive digital transformation across core banking, insurance underwriting, asset management, and payment systems. These organizations leverage autonomous AI for real-time fraud detection, credit risk assessment, personalized financial planning, automated claims processing, and customer support automation. Advanced AI-powered agents analyze large volumes of transactional data at high speeds to detect anomalies, prevent fraudulent activities, and assess risks more accurately than traditional systems.
North America Autonomous AI and Autonomous Agents Market generated USD 2.7 billion in 2024, driven by strong investments from tech giants like Google, Microsoft, and NVIDIA, supportive government policies, and a mature AI ecosystem. The U.S. remains a global hub for AI innovation, with companies actively integrating autonomous agents into sectors such as finance, healthcare, defense, and transportation. Meanwhile, Asia Pacific is witnessing the fastest growth, fueled by rapid industrialization, aggressive smart city initiatives, and the expansion of AI-driven manufacturing hubs in countries like China, Japan, and South Korea.
Leading companies such as Google, Microsoft, Salesforce, SAP SE, Oracle, IBM, NVIDIA, and OpenAI drive innovation in the Autonomous AI and Autonomous Agents Market. These organizations invest heavily in R&D, developing next-generation AI architectures, expanding AI cloud services, and integrating generative AI capabilities into their platforms to offer more autonomous, adaptive, and intelligent solutions.
The rapid integration of machine learning, natural language processing (NLP), and computer vision technologies is enhancing the sophistication and capabilities of autonomous systems. Enterprises are adopting these solutions to automate repetitive processes, optimize operations, increase customer experiences, and achieve greater operational efficiency. Additionally, breakthroughs in edge computing, generative AI models like GPT and DALL·E, and reinforcement learning are expanding the scope of autonomous applications into robotics, smart cities, autonomous vehicles, and personalized healthcare. The shift toward Industry 4.0, the rise of smart factories, and the growing reliance on predictive maintenance and AI-driven supply chains propel market growth. Furthermore, regulatory initiatives such as the EU's Artificial Intelligence Act and the U.S. National AI Initiative are promoting responsible AI deployment, boosting innovation, and encouraging broader adoption across sectors.
The Autonomous AI and Autonomous Agents Market is primarily segmented by component, with the software segment generating USD 4.58 billion in 2024. Software solutions, including autonomous decision-making platforms, intelligent automation frameworks, and AI-driven analytics, are at the heart of modern AI ecosystems, enabling organizations to unlock deeper insights, automate workflows, and achieve faster, data-driven decision-making. The surge in demand for cloud-based AI software and AI-as-a-Service (AIaaS) platforms is further driving the dominance of the software segment.
In terms of technology, the machine learning segment generated USD 2.41 billion in 2024. Machine learning algorithms enable autonomous agents to continuously improve performance by learning from data patterns and real-world experiences. The growing use of machine learning in fraud detection, predictive analytics, autonomous navigation, and personalized healthcare enhances the adoption of intelligent, self-learning systems across industries.
In terms of industry verticals, the BFSI (Banking, Financial Services, and Insurance) segment generated USD 963.0 million in 2024. BFSI institutions adopt autonomous AI solutions to drive digital transformation across core banking, insurance underwriting, asset management, and payment systems. These organizations leverage autonomous AI for real-time fraud detection, credit risk assessment, personalized financial planning, automated claims processing, and customer support automation. Advanced AI-powered agents analyze large volumes of transactional data at high speeds to detect anomalies, prevent fraudulent activities, and assess risks more accurately than traditional systems.
North America Autonomous AI and Autonomous Agents Market generated USD 2.7 billion in 2024, driven by strong investments from tech giants like Google, Microsoft, and NVIDIA, supportive government policies, and a mature AI ecosystem. The U.S. remains a global hub for AI innovation, with companies actively integrating autonomous agents into sectors such as finance, healthcare, defense, and transportation. Meanwhile, Asia Pacific is witnessing the fastest growth, fueled by rapid industrialization, aggressive smart city initiatives, and the expansion of AI-driven manufacturing hubs in countries like China, Japan, and South Korea.
Leading companies such as Google, Microsoft, Salesforce, SAP SE, Oracle, IBM, NVIDIA, and OpenAI drive innovation in the Autonomous AI and Autonomous Agents Market. These organizations invest heavily in R&D, developing next-generation AI architectures, expanding AI cloud services, and integrating generative AI capabilities into their platforms to offer more autonomous, adaptive, and intelligent solutions.
Table of Contents
175 Pages
- Chapter 1 Research Methodology
- 1.1 Research design
- 1.1.1 Research approach
- 1.1.2 Data collection methods
- 1.2 Base estimates and calculations
- 1.2.1 Base year calculation
- 1.2.2 Key trends for market estimates
- 1.2.3 Forecast model
- 1.3 Primary research & validation
- 1.3.1 Primary sources
- 1.3.2.1 Data mining sources
- 1.4 Market definitions
- Chapter 2 Executive Summary
- 2.1 Industry 360 degree synopsis, 2021-2034
- 2.2 Business trends
- 2.2.1.1 Total Addressable Market (TAM), 2025 - 2034
- 2.2.1.2 TAM trends
- 2.3 Regional trends
- 2.4 Component trends
- 2.5 Deployment model trends
- 2.6 Enterprise size trends
- 2.7 Technology trends
- 2.8 Industry vertical trends
- Chapter 3 Industry Insights
- 3.1 Industry ecosystem analysis
- 3.1.1 Hardware providers
- 3.1.2 Software providers
- 3.1.3 Cloud service providers
- 3.1.4 System integrators
- 3.1.5 End-users
- 3.2 Supplier landscape
- 3.2.1 Supplier landscape
- 3.3 Technology and innovation landscape
- 3.3.1 Artificial Intelligence (AI) & Machine Learning (ML)
- 3.3.2 Computer Vision Â3.3.3 Internet of Things (IoT) & Edge Computing
- 3.3.4 Context Awareness & Situational Intelligence
- 3.3.5 Natural Language Processing (NLP)
- 3.4 Patent analysis
- 3.5 Key news and initiatives
- 3.6 Regulatory landscape
- 3.6.1 North America
- 3.6.2 Europe
- 3.6.3 Asia Pacific
- 3.6.4 Latin America
- 3.6.5 MEA
- 3.7 Government investment in AI, by region
- 3.7.1 European Union (EU) - InvestAI Initiative
- 3.7.2 United States - National AI Initiative Act
- 3.7.3 China - AI Development Plan & Smart Manufacturing
- 3.7.4 United Arab Emirates - AI and Cloud Investments
- 3.8 Consumer and end-user insights
- 3.8.1 Consumer insights
- 3.8.2 End-user insights
- 3.9 Industry impact forces
- 3.9.1 Growth drivers
- 3.9.1.1 Increasing global demand for automation and efficiency
- 3.9.2 Industry pitfalls & challenges
- 3.9.2.1 Surge in government support for AI research & development
- 3.10 Growth potential analysis
- 3.11 Porter's analysis
- 3.12 PESTEL analysis
- Chapter 4 Competitive Landscape, 2024
- 4.1 Introduction
- 4.2 Company market share analysis
- 4.3 Competitive positioning matrix
- 4.4 Strategic outlook matrix
- Chapter 5 Autonomous AI and Autonomous Agents Market, By Component
- 5.1 Key trends
- 5.2 Hardware
- 5.3 Software
- 5.4 Services
- 6.1 Key trends
- 6.2 On-premises
- 6.3 Cloud-based
- Chapter 7 Autonomous AI and Autonomous Agents Market, By Enterprise Size
- 7.1 Key trends
- 7.2 SMEs
- 7.3 Large enterprises
- Chapter 8 Autonomous AI and Autonomous Agents Market, By Technology
- 8.1 Key trends
- 8.2 Machine Learning
- 8.3 NLP
- 8.4 Context Awareness
- 8.5 Computer Vision
- Chapter 9 Autonomous AI and Autonomous Agents Market, By Industry Vertical
- 9.1 Key trends
- 9.2 Retail & e-commerce
- 9.3 BFSI
- 9.4 IT & telecom
- 9.5 Manufacturing
- 9.6 Healthcare & life sciences
- 9.7 Government & defense
- 9.8 Automotive
- 9.9 Energy & power
- 9.10 Others
- Chapter 10 Autonomous AI and Autonomous Agent Market, By Region
- 10.1 Key trends
- 10.2 North America
- 10.3 Europe
- 10.4 Asia Pacific
- 10.5 Latin America
- 10.6 MEA
- Chapter 11 Company Profile
- 11.1 Aerogility
- 11.1.1 Global Overview
- 11.1.2 Market/Business Overview
- 11.1.3 Financial data
- 11.1.4 Product Landscape
- 11.1.5 Strategic Outlook
- 11.1.6 SWOT Analysis
- 11.2 AgentGPT
- 11.2.1 Global Overview
- 11.2.2 Market/Business Overview
- 11.2.3 Financial data
- 11.2.4 Product Landscape
- 11.2.5 SWOT Analysis
- 11.3 AWS
- 11.3.1 Global Overview
- 11.3.2 Market/Business Overview
- 11.3.3 Financial data
- 11.3.3.1 Annual sales revenue, 2022-2024 (USD Million)
- 11.3.4 Product Landscape
- 11.3.5 Strategic Outlook
- 11.3.6 SWOT Analysis
- 11.4 Baidu
- 11.4.1 Global Overview
- 11.4.2 Market/Business Overview
- 11.4.3 Financial data
- 11.4.3.1 Annual sales revenue, 2022-2024 (USD Million)
- 11.4.4 Product Landscape
- 11.4.5 Strategic Outlook
- 11.4.6 SWOT Analysis
- 11.5 C3.ai
- 11.5.1 Global Overview
- 11.5.2 Market/Business Overview
- 11.5.3 Financial data
- 11.5.3.1 Annual sales revenue, 2022-2024 (USD Million)
- 11.5.4 Product Landscape
- 11.5.5 Strategic Outlook
- 11.5.6 SWOT Analysis
- 11.6 DeepMind
- 11.6.1 Global Overview
- 11.6.2 Market/Business Overview
- 11.6.3 Financial data
- 11.6.3.1 Annual sales revenue, 2022-2024 (USD Million)
- 11.6.4 Product Landscape
- 11.6.5 Strategic Outlook
- 11.6.6 SWOT Analysis
- 11.7 DeepSeek
- 11.7.1 Global Overview
- 11.7.2 Market/Business Overview
- 11.7.3 Financial data
- 11.7.4 Product Landscape
- 11.7.5 Strategic Outlook
- 11.7.6 SWOT Analysis
- 11.8 Fetch.ai
- 11.8.1 Global Overview
- 11.8.2 Market/Business Overview
- 11.8.3 Financial data
- 11.8.4 Product Landscape
- 11.8.5 Strategic Outlook
- 11.8.6 SWOT Analysis
- 11.9 Genesys
- 11.9.1 Global Overview
- 11.9.2 Market/Business Overview
- 11.9.3 Financial data
- 11.9.4 Product Landscape
- 11.9.5 Strategic Outlook
- 11.9.6 SWOT Analysis
- 11.10 Google
- 11.10.1 Global Overview
- 11.10.2 Market/Business Overview
- 11.10.3 Financial data
- 11.10.3.1 Annual sales revenue, 2022-2024 (USD Million)
- 11.10.4 Product Landscape
- 11.10.5 Strategic Outlook
- 11.10.6 SWOT Analysis
- 11.11 H2O.ai
- 11.11.1 Global overview
- 11.11.2 Market/business overview
- 11.11.3 Financial Data
- 11.11.4 Product landscape
- 11.11.5 Strategic outlook
- 11.11.6 SWOT analysis
- 11.12 IBM
- 11.12.1 Global Overview
- 11.12.3.1 Sales Revenue, 2021-2024 (in USD Million)
- 11.12.4 Product Landscape
- 11.12.5 Strategic Outlook
- 11.12.6 SWOT Analysis
- 11.13 Microsoft
- 11.13.1 Global Overview
- 11.13.2 Market/Business Overview
- 11.13.3 Financial Data
- 11.13.3.1 Sales Revenue, 2022-2024 (in USD Million)
- 11.13.4 Product Landscape
- 11.13.5 Strategic Outlook
- 11.13.6 SWOT Analysis
- 11.14 Nvidia Corporation
- 11.14.1 Global Overview
- 11.14.2 Market/Business Overview
- 11.14.3 Financial Data
- 11.14.3.1 Sales Revenue, 2021-2024 (in USD Million)
- 11.14.4 Product Landscape
- 11.14.5 Strategic Outlook
- 11.14.6 SWOT Analysis
- 11.15 OpenAI
- 11.15.1 Global Overview
- 11.15.2 Market/Business Overview
- 11.15.3 Financial Data
- 11.15.4 Product Landscape
- 11.15.5 Strategic Outlook
- 11.15.6 SWOT Analysis
- 11.16 Oracle
- 11.16.1 Global Overview
- 11.16.2 Market/Business Overview
- 11.16.3 Financial Data
- 11.16.3.1 Sales Revenue, 2022-2024 (in USD Million)
- 11.16.4 Product Landscape
- 11.16.5 Strategic Outlook
- 11.16.6 SWOT Analysis
- 11.17 Rezolve AI Limited
- 11.17.1 Global Overview
- 11.17.2 Market/Business Overview
- 11.17.3 Financial Data
- 11.17.4 Product Landscape
- 11.17.5 Strategic Outlook
- 11.17.6 SWOT Analysis
- 11.18 Salesforce
- 11.18.1 Global overview
- 11.18.2 Market/Business overview
- 11.18.3 Financial data
- 11.18.3.1 Sales revenue, 2021-2024
- 11.18.4 Product Landscape
- 11.18.5 Strategic Outlook
- 11.18.6 SWOT Analysis
- 11.19 SAP SE
- 11.19.1 Global overview
- 11.19.2 Market/Business overview
- 11.19.3 Financial data
- 11.19.3.1 Sales revenue, 2021-2024
- 11.19.4 Product Landscape
- 11.19.5 Strategic Outlook
- 11.19.6 SWOT Analysis
- 11.20 SAS Institute
- 11.20.1 Global overview
- 11.20.2 Market/business overview
- 11.20.3 Financial Data
- 11.20.4 Product landscape
- 11.20.5 Strategic outlook
- 11.20.6 SWOT analysis
Search Inside Report
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.