Autonomous AI and Autonomous Agents Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2025-2034

The Global Autonomous AI and Autonomous Agents Market was valued at USD 6.84 billion in 2024 and is estimated to grow at a CAGR of 30.3%, reaching USD 93.7 billion by 2034, driven by the increasing demand for intelligent automation, real-time data processing, and AI-powered decision-making across industries. Autonomous AI and agents represent a transformative technology capable of operating independently, learning from their environments, and executing complex tasks with minimal human intervention. Their ability to analyze vast datasets, adapt to dynamic conditions, and make real-time decisions reshape sectors such as healthcare, finance, manufacturing, and transportation.

The rapid integration of machine learning, natural language processing (NLP), and computer vision technologies is enhancing the sophistication and capabilities of autonomous systems. Enterprises are adopting these solutions to automate repetitive processes, optimize operations, increase customer experiences, and achieve greater operational efficiency. Additionally, breakthroughs in edge computing, generative AI models like GPT and DALL·E, and reinforcement learning are expanding the scope of autonomous applications into robotics, smart cities, autonomous vehicles, and personalized healthcare. The shift toward Industry 4.0, the rise of smart factories, and the growing reliance on predictive maintenance and AI-driven supply chains propel market growth. Furthermore, regulatory initiatives such as the EU's Artificial Intelligence Act and the U.S. National AI Initiative are promoting responsible AI deployment, boosting innovation, and encouraging broader adoption across sectors.

The Autonomous AI and Autonomous Agents Market is primarily segmented by component, with the software segment generating USD 4.58 billion in 2024. Software solutions, including autonomous decision-making platforms, intelligent automation frameworks, and AI-driven analytics, are at the heart of modern AI ecosystems, enabling organizations to unlock deeper insights, automate workflows, and achieve faster, data-driven decision-making. The surge in demand for cloud-based AI software and AI-as-a-Service (AIaaS) platforms is further driving the dominance of the software segment.

In terms of technology, the machine learning segment generated USD 2.41 billion in 2024. Machine learning algorithms enable autonomous agents to continuously improve performance by learning from data patterns and real-world experiences. The growing use of machine learning in fraud detection, predictive analytics, autonomous navigation, and personalized healthcare enhances the adoption of intelligent, self-learning systems across industries.

In terms of industry verticals, the BFSI (Banking, Financial Services, and Insurance) segment generated USD 963.0 million in 2024​. BFSI institutions adopt autonomous AI solutions to drive digital transformation across core banking, insurance underwriting, asset management, and payment systems. These organizations leverage autonomous AI for real-time fraud detection, credit risk assessment, personalized financial planning, automated claims processing, and customer support automation. Advanced AI-powered agents analyze large volumes of transactional data at high speeds to detect anomalies, prevent fraudulent activities, and assess risks more accurately than traditional systems.

North America Autonomous AI and Autonomous Agents Market generated USD 2.7 billion in 2024, driven by strong investments from tech giants like Google, Microsoft, and NVIDIA, supportive government policies, and a mature AI ecosystem. The U.S. remains a global hub for AI innovation, with companies actively integrating autonomous agents into sectors such as finance, healthcare, defense, and transportation. Meanwhile, Asia Pacific is witnessing the fastest growth, fueled by rapid industrialization, aggressive smart city initiatives, and the expansion of AI-driven manufacturing hubs in countries like China, Japan, and South Korea.

Leading companies such as Google, Microsoft, Salesforce, SAP SE, Oracle, IBM, NVIDIA, and OpenAI drive innovation in the Autonomous AI and Autonomous Agents Market. These organizations invest heavily in R&D, developing next-generation AI architectures, expanding AI cloud services, and integrating generative AI capabilities into their platforms to offer more autonomous, adaptive, and intelligent solutions.


Chapter 1 Research Methodology
1.1 Research design
1.1.1 Research approach
1.1.2 Data collection methods
1.2 Base estimates and calculations
1.2.1 Base year calculation
1.2.2 Key trends for market estimates
1.2.3 Forecast model
1.3 Primary research & validation
1.3.1 Primary sources
1.3.2.1 Data mining sources
1.4 Market definitions
Chapter 2 Executive Summary
2.1 Industry 360 degree synopsis, 2021-2034
2.2 Business trends
2.2.1.1 Total Addressable Market (TAM), 2025 - 2034
2.2.1.2 TAM trends
2.3 Regional trends
2.4 Component trends
2.5 Deployment model trends
2.6 Enterprise size trends
2.7 Technology trends
2.8 Industry vertical trends
Chapter 3 Industry Insights
3.1 Industry ecosystem analysis
3.1.1 Hardware providers
3.1.2 Software providers
3.1.3 Cloud service providers
3.1.4 System integrators
3.1.5 End-users
3.2 Supplier landscape
3.2.1 Supplier landscape
3.3 Technology and innovation landscape
3.3.1 Artificial Intelligence (AI) & Machine Learning (ML)
3.3.2 Computer Vision Â3.3.3 Internet of Things (IoT) & Edge Computing
3.3.4 Context Awareness & Situational Intelligence
3.3.5 Natural Language Processing (NLP)
3.4 Patent analysis
3.5 Key news and initiatives
3.6 Regulatory landscape
3.6.1 North America
3.6.2 Europe
3.6.3 Asia Pacific
3.6.4 Latin America
3.6.5 MEA
3.7 Government investment in AI, by region
3.7.1 European Union (EU) - InvestAI Initiative
3.7.2 United States - National AI Initiative Act
3.7.3 China - AI Development Plan & Smart Manufacturing
3.7.4 United Arab Emirates - AI and Cloud Investments
3.8 Consumer and end-user insights
3.8.1 Consumer insights
3.8.2 End-user insights
3.9 Industry impact forces
3.9.1 Growth drivers
3.9.1.1 Increasing global demand for automation and efficiency
3.9.2 Industry pitfalls & challenges
3.9.2.1 Surge in government support for AI research & development
3.10 Growth potential analysis
3.11 Porter's analysis
3.12 PESTEL analysis
Chapter 4 Competitive Landscape, 2024
4.1 Introduction
4.2 Company market share analysis
4.3 Competitive positioning matrix
4.4 Strategic outlook matrix
Chapter 5 Autonomous AI and Autonomous Agents Market, By Component
5.1 Key trends
5.2 Hardware
5.3 Software
5.4 Services
6.1 Key trends
6.2 On-premises
6.3 Cloud-based
Chapter 7 Autonomous AI and Autonomous Agents Market, By Enterprise Size
7.1 Key trends
7.2 SMEs
7.3 Large enterprises
Chapter 8 Autonomous AI and Autonomous Agents Market, By Technology
8.1 Key trends
8.2 Machine Learning
8.3 NLP
8.4 Context Awareness
8.5 Computer Vision
Chapter 9 Autonomous AI and Autonomous Agents Market, By Industry Vertical
9.1 Key trends
9.2 Retail & e-commerce
9.3 BFSI
9.4 IT & telecom
9.5 Manufacturing
9.6 Healthcare & life sciences
9.7 Government & defense
9.8 Automotive
9.9 Energy & power
9.10 Others
Chapter 10 Autonomous AI and Autonomous Agent Market, By Region
10.1 Key trends
10.2 North America
10.3 Europe
10.4 Asia Pacific
10.5 Latin America
10.6 MEA
Chapter 11 Company Profile
11.1 Aerogility
11.1.1 Global Overview
11.1.2 Market/Business Overview
11.1.3 Financial data
11.1.4 Product Landscape
11.1.5 Strategic Outlook
11.1.6 SWOT Analysis
11.2 AgentGPT
11.2.1 Global Overview
11.2.2 Market/Business Overview
11.2.3 Financial data
11.2.4 Product Landscape
11.2.5 SWOT Analysis
11.3 AWS
11.3.1 Global Overview
11.3.2 Market/Business Overview
11.3.3 Financial data
11.3.3.1 Annual sales revenue, 2022-2024 (USD Million)
11.3.4 Product Landscape
11.3.5 Strategic Outlook
11.3.6 SWOT Analysis
11.4 Baidu
11.4.1 Global Overview
11.4.2 Market/Business Overview
11.4.3 Financial data
11.4.3.1 Annual sales revenue, 2022-2024 (USD Million)
11.4.4 Product Landscape
11.4.5 Strategic Outlook
11.4.6 SWOT Analysis
11.5 C3.ai
11.5.1 Global Overview
11.5.2 Market/Business Overview
11.5.3 Financial data
11.5.3.1 Annual sales revenue, 2022-2024 (USD Million)
11.5.4 Product Landscape
11.5.5 Strategic Outlook
11.5.6 SWOT Analysis
11.6 DeepMind
11.6.1 Global Overview
11.6.2 Market/Business Overview
11.6.3 Financial data
11.6.3.1 Annual sales revenue, 2022-2024 (USD Million)
11.6.4 Product Landscape
11.6.5 Strategic Outlook
11.6.6 SWOT Analysis
11.7 DeepSeek
11.7.1 Global Overview
11.7.2 Market/Business Overview
11.7.3 Financial data
11.7.4 Product Landscape
11.7.5 Strategic Outlook
11.7.6 SWOT Analysis
11.8 Fetch.ai
11.8.1 Global Overview
11.8.2 Market/Business Overview
11.8.3 Financial data
11.8.4 Product Landscape
11.8.5 Strategic Outlook
11.8.6 SWOT Analysis
11.9 Genesys
11.9.1 Global Overview
11.9.2 Market/Business Overview
11.9.3 Financial data
11.9.4 Product Landscape
11.9.5 Strategic Outlook
11.9.6 SWOT Analysis
11.10 Google
11.10.1 Global Overview
11.10.2 Market/Business Overview
11.10.3 Financial data
11.10.3.1 Annual sales revenue, 2022-2024 (USD Million)
11.10.4 Product Landscape
11.10.5 Strategic Outlook
11.10.6 SWOT Analysis
11.11 H2O.ai
11.11.1 Global overview
11.11.2 Market/business overview
11.11.3 Financial Data
11.11.4 Product landscape
11.11.5 Strategic outlook
11.11.6 SWOT analysis
11.12 IBM
11.12.1 Global Overview
11.12.3.1 Sales Revenue, 2021-2024 (in USD Million)
11.12.4 Product Landscape
11.12.5 Strategic Outlook
11.12.6 SWOT Analysis
11.13 Microsoft
11.13.1 Global Overview
11.13.2 Market/Business Overview
11.13.3 Financial Data
11.13.3.1 Sales Revenue, 2022-2024 (in USD Million)
11.13.4 Product Landscape
11.13.5 Strategic Outlook
11.13.6 SWOT Analysis
11.14 Nvidia Corporation
11.14.1 Global Overview
11.14.2 Market/Business Overview
11.14.3 Financial Data
11.14.3.1 Sales Revenue, 2021-2024 (in USD Million)
11.14.4 Product Landscape
11.14.5 Strategic Outlook
11.14.6 SWOT Analysis
11.15 OpenAI
11.15.1 Global Overview
11.15.2 Market/Business Overview
11.15.3 Financial Data
11.15.4 Product Landscape
11.15.5 Strategic Outlook
11.15.6 SWOT Analysis
11.16 Oracle
11.16.1 Global Overview
11.16.2 Market/Business Overview
11.16.3 Financial Data
11.16.3.1 Sales Revenue, 2022-2024 (in USD Million)
11.16.4 Product Landscape
11.16.5 Strategic Outlook
11.16.6 SWOT Analysis
11.17 Rezolve AI Limited
11.17.1 Global Overview
11.17.2 Market/Business Overview
11.17.3 Financial Data
11.17.4 Product Landscape
11.17.5 Strategic Outlook
11.17.6 SWOT Analysis
11.18 Salesforce
11.18.1 Global overview
11.18.2 Market/Business overview
11.18.3 Financial data
11.18.3.1 Sales revenue, 2021-2024
11.18.4 Product Landscape
11.18.5 Strategic Outlook
11.18.6 SWOT Analysis
11.19 SAP SE
11.19.1 Global overview
11.19.2 Market/Business overview
11.19.3 Financial data
11.19.3.1 Sales revenue, 2021-2024
11.19.4 Product Landscape
11.19.5 Strategic Outlook
11.19.6 SWOT Analysis
11.20 SAS Institute
11.20.1 Global overview
11.20.2 Market/business overview
11.20.3 Financial Data
11.20.4 Product landscape
11.20.5 Strategic outlook
11.20.6 SWOT analysis

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings