The Global AI & ML in Oil & Gas Market was valued at USD 767.9 million in 2024 and is projected to grow at a 4.8% CAGR from 2025 to 2034, fueled by rising adoption of artificial intelligence (AI) and machine learning (ML) solutions across upstream operations. The market is driven by the need to enhance operational efficiency, reduce exploration risks, optimize production, and enable predictive maintenance, with significant deployment among National Oil Companies (NOCs) and increasing focus on E&P optimization.
The integration of AI and ML technologies in the oil & gas sector is gaining momentum as companies seek to improve efficiency, reduce costs, and address environmental concerns. AI and ML algorithms help analyze vast datasets from seismic studies, drilling operations, and production workflows to optimize decision-making and reduce operational risks. For instance, machine learning models are being used to predict equipment failures, optimize drilling routes, and enhance reservoir modeling.
Furthermore, the increased focus on reducing non-productive time (NPT) and improving resource management has accelerated the adoption of AI & ML platforms. Technologies such as AI-driven predictive analytics, robotic process automation (RPA), and natural language processing (NLP) are facilitating real-time data analysis and actionable insights for oil & gas operators.
Based on platform (by offering), the AI & ML in oil & gas market is segmented into software, services, and platforms. The platforms segment accounted for a significant market share in 2024 and is projected to reach USD 2.6 billion by 2034. AI/ML platforms enable oil & gas companies to integrate disparate data sources, apply advanced analytics, and automate decision-making processes across operations. These platforms offer customizable and scalable solutions that can be adapted to various upstream activities, from exploration to production optimization.
By operation, AI & ML adoption is predominantly observed in upstream activities, including exploration, drilling, and production. The upstream segment surpassed USD 1.3 billion in 2024 and continues to dominate the market, supported by advancements in data-driven reservoir modeling, predictive drilling analytics, and real-time monitoring systems. AI & ML applications in upstream operations enable companies to analyze geological and geophysical data for improved resource identification and extraction. These technologies assist in minimizing exploration risks and optimizing drilling processes, thereby reducing operational costs and enhancing yield efficiency.
Based on application, the AI & ML in oil & gas market is segmented into E&P optimization, drilling optimization, predictive maintenance, reservoir management, and others. Among these, Exploration and Production (E&P) optimization holds a substantial share and is forecasted to reach USD 841.9 million by 2034. E&P optimization leverages AI/ML tools for seismic data analysis, reservoir modeling, real-time drilling optimization, and production forecasting. AI-driven models enable oil & gas companies to enhance resource identification, improve recovery rates, and streamline field development strategies.
Based on end-use, the AI & ML in oil & gas market is segmented into National Oil Companies (NOCs), Independent Oil Companies (IOCs), and Oilfield Service Companies. The NOCs segment is poised to surpass USD 2.4 billion by 2034, driven by significant investments in AI/ML-based solutions for exploration, production, and environmental management. NOCs are increasingly collaborating with AI technology providers to implement data analytics, AI-based monitoring, and production optimization tools to ensure cost-effective and sustainable operations.
Regionally, North America represents a leading market for AI & ML adoption in oil & gas, projected to exceed USD 1.2 billion by 2034. The region benefits from strong technological infrastructure, advanced R&D capabilities, and the presence of major oil & gas operators.U.S.-based companies are at the forefront of AI/ML-driven innovations in shale oil and gas exploration, production automation, and pipeline monitoring. The region’s focus on operational efficiency, cost reduction, and environmental sustainability is further accelerating AI/ML adoption
Learn how to effectively navigate the market research process to help guide your organization on the journey to success.
Download eBook