The global Generative AI market size is predicted to grow from US$ 38630 million in 2025 to US$ 221820 million in 2031; it is expected to grow at a CAGR of 33.8% from 2025 to 2031.
Generative AI, that is, using deep learning models and probabilistic modeling techniques to generate new content similar to training data by learning the distribution characteristics of a large amount of data. Its core goal is to generate new samples or content (such as text, images, audio, etc.) by capturing the potential structure or pattern of the data, which looks indistinguishable from real data in some aspects.
Generative AI is based on deep learning models and is trained through neural networks to learn the statistical characteristics and inherent laws of data. Generative AI predicts the generation process of data based on probabilistic models and attempts to learn the conditional probability distribution of a certain type of data. In many generative AI models, data is mapped to a lower-dimensional latent space, which represents the high-dimensional feature compression of the data and is a high-level semantic representation learned by the model.
Generative AI can automatically generate corresponding answers based on user questions to realize intelligent customer service systems or intelligent assistants. At the same time, it can also automatically write news reports, advertising copy, etc. to improve writing efficiency and quality. In addition, in terms of literary creation, generative AI can generate literary works such as novels, poems, and scripts to assist writers and screenwriters in the creative process. Generative AI can automatically generate corresponding codes based on natural language descriptions. It can also automatically supplement missing code snippets based on existing codes to improve coding efficiency. Generative AI can automatically identify and classify objects or scenes in images based on image content to achieve image classification and segmentation tasks. In industrial design, it can assist industrial designers in designing products and generate 3D models and rendered images that meet the requirements. In addition, generative AI can also generate images of artworks or commercial products based on the creativity of artists or designers. Generative AI can synthesize realistic human voices for use in news broadcasts, audiobooks and other fields. It can also convert one voice into another to achieve voice editing and translation tasks. In terms of film and television content analysis and editing, generative AI can analyze film and television content, automatically generate editing and editing suggestions, and improve post-production efficiency. In addition, it can also automatically generate music works or video clips based on music style or video theme. Generative AI can automatically generate movie special effects, game scenes and animation clips to improve production efficiency and quality. It can also assist architects and designers in designing buildings and furniture and generate 3D models and rendered images that meet the requirements.
With the optimization and upgrading of the economic structure, the demand for efficiency and innovation in various industries continues to grow, providing a broad market space for the application of generative AI. Generative AI can help enterprises improve production efficiency, reduce costs, and enhance competitiveness, thereby promoting its rapid development.
The public's attention to generative AI continues to rise, and the younger generation is more receptive to new technologies. At the same time, with the improvement of education level and the strengthening of popular science work, more and more people are beginning to understand and recognize the value and significance of generative AI.
AI technology has gone through several stages of development, and the advent of the era of large models has made the application of generative AI more extensive. Different large models have their own advantages in various fields, which has promoted the continuous innovation and breakthroughs of generative AI technology. In addition, the rapid development of technologies such as cloud computing and big data has also provided powerful computing resources and data support for generative AI.
Generative AI has broad application prospects in many fields such as text generation, code generation, and image generation. As people's demand for personalized and customized services continues to increase, generative AI can better meet these needs, thereby promoting its rapid development.
LPI (LP Information)' newest research report, the “Generative AI Industry Forecast” looks at past sales and reviews total world Generative AI sales in 2024, providing a comprehensive analysis by region and market sector of projected Generative AI sales for 2025 through 2031. With Generative AI sales broken down by region, market sector and sub-sector, this report provides a detailed analysis in US$ millions of the world Generative AI industry.
This Insight Report provides a comprehensive analysis of the global Generative AI landscape and highlights key trends related to product segmentation, company formation, revenue, and market share, latest development, and M&A activity. This report also analyses the strategies of leading global companies with a focus on Generative AI portfolios and capabilities, market entry strategies, market positions, and geographic footprints, to better understand these firms’ unique position in an accelerating global Generative AI market.
This Insight Report evaluates the key market trends, drivers, and affecting factors shaping the global outlook for Generative AI and breaks down the forecast by Type, by Application, geography, and market size to highlight emerging pockets of opportunity. With a transparent methodology based on hundreds of bottom-up qualitative and quantitative market inputs, this study forecast offers a highly nuanced view of the current state and future trajectory in the global Generative AI.
This report presents a comprehensive overview, market shares, and growth opportunities of Generative AI market by product type, application, key players and key regions and countries.
Segmentation by Type:
Desktop Application
Mobile Application
Segmentation by Application:
Text Generation
Image Generation
Code Generation
Audio Generation
Others
This report also splits the market by region:
Americas
United States
Canada
Mexico
Brazil
APAC
China
Japan
Korea
Southeast Asia
India
Australia
Europe
Germany
France
UK
Italy
Russia
Middle East & Africa
Egypt
South Africa
Israel
Turkey
GCC Countries
The below companies that are profiled have been selected based on inputs gathered from primary experts and analyzing the company's coverage, product portfolio, its market penetration.
Google
Meta
OpenAI
Stability AI
Baidu
Microsoft
Anthropic
IBM Watson
Amazon Web Services (AWS)
Cohere
Mistral
Replika
Jasper
Please note: The report will take approximately 2 business days to prepare and deliver.
Learn how to effectively navigate the market research process to help guide your organization on the journey to success.
Download eBook