Global AI in Computer Vision Market Outlook to 2028

Global AI in Computer Vision Market Overview

In 2023, the Global AI in Computer Vision Market was valued at USD 17.2 billion, driven by the increasing adoption of AI technology across various industries such as automotive, healthcare, retail, and security. The market is segmented into hardware, software, and services, with software being the most dominant due to its extensive application in image recognition, facial recognition, and object detection.

Major players in the Global AI in Computer Vision Market include NVIDIA Corporation, Intel Corporation, IBM Corporation, Google LLC, and Microsoft Corporation. These companies are recognized for their innovative AI algorithms, strong R&D investments, and a focus on developing advanced computer vision solutions. NVIDIA Corporation leads the market with its cutting-edge GPUs and AI software platforms, known for their performance and reliability in training deep learning models.

In regions like North America and Europe, countries such as the United States, Germany, and the United Kingdom are prominent markets, driven by high technological adoption rates, strong presence of tech giants, and substantial investment in AI research and development. These regions are characterized by a mature technology market with significant spending on advanced AI applications.

In 2023, Google LLC launched a new AI-based image recognition software aimed at enhancing security and surveillance systems. This innovation underscores the ongoing shift towards automated, AI-driven solutions in various industries, reflecting broader trends in adopting AI for efficiency and accuracy.

Global AI in Computer Vision Market Segmentation

The Global AI in Computer Vision Market can be segmented by component, application, end-user, and region:

By Application: The Global AI in Computer Vision market is segmented by application into image recognition, facial recognition, and object detection. In 2023, image recognition dominates the market due to its widespread use in various industries, including retail for inventory management, healthcare for diagnostic imaging, and automotive for autonomous driving. Facial recognition is also growing rapidly, driven by increasing demand for security and surveillance solutions.

By Region: The Global AI in Computer Vision market is segmented regionally into North America, Europe, Asia-Pacific, and Rest of the World. In 2023, North America leads the market due to high technological adoption, substantial investment in AI research, and a strong presence of major technology companies. The Asia-Pacific region is also significant, driven by rapid digital transformation and government initiatives to promote AI technology adoption.

By Component: The Global AI in Computer Vision market is segmented into hardware, software, and services. In 2023, software remains the most dominant component due to its essential role in processing and analyzing visual data. However, hardware components like GPUs and edge devices are gaining popularity for their ability to enhance processing power and reduce latency, particularly in real-time applications.

Global AI in Computer Vision Market Competitive Landscape

Company

Establishment Year

Headquarters

NVIDIA Corporation

1993

Santa Clara, USA

Intel Corporation

1968

Santa Clara, USA

IBM Corporation

1911

Armonk, USA

Google LLC

1998

Mountain View, USA

Microsoft Corporation

1975

Redmond, USA

NVIDIA Corporation: In 2023, NVIDIA introduced a new range of AI-powered GPUs aimed at enhancing the performance of computer vision applications, catering to the growing demand for high-performance hardware in AI applications. This launch is aimed at strengthening the company's position in the AI hardware market, where there is increasing consumer interest in specialized and high-performance solutions.

Google LLC: In 2024, Google LLC expanded its AI capabilities with the launch of a new AI-based facial recognition software, designed to meet the rising demand for advanced security and surveillance systems. The new software emphasizes accuracy and speed, leveraging Google's expertise in machine learning and cloud computing. This expansion reflects Google's commitment to AI innovation and positions the brand to capture a significant share of the growing AI market.

Global AI in Computer Vision Market Analysis

Market Growth Drivers:

Increasing Adoption of AI Technology: The growing integration of AI technology across various industries is driving the demand for AI in computer vision. In 2023, the adoption of AI technology saw significant growth as businesses sought to automate processes, improve decision-making, and enhance operational efficiency. This increasing adoption is particularly evident in sectors such as healthcare, automotive, and retail, where AI-powered computer vision solutions are being utilized for tasks like diagnostic imaging, autonomous driving, and inventory management.

Technological Advancements: Continuous advancements in AI algorithms, including deep learning and neural networks, are enhancing the capabilities of computer vision systems. Recent developments have improved the accuracy and efficiency of image and facial recognition, object detection, and real-time processing. For example, new models have significantly reduced error rates in image classification tasks, leading to more reliable and effective computer vision applications across various industries.

Expansion of Application Areas: The use of computer vision is expanding into new application areas such as smart cities, augmented reality, and industrial automation. In 2023, there was a notable increase in the deployment of computer vision technologies for innovative applications like automated inspection, virtual fitting rooms, and traffic management. This expansion is driven by the need for advanced solutions that enhance efficiency and improve user experiences, making computer vision a critical technology in these emerging fields.

Market Challenges
:

Interoperability and Integration: Integrating AI-powered computer vision systems with existing IT infrastructure and other technologies can be complex. Many organizations face challenges in ensuring seamless interoperability between different systems and platforms, which can hinder the deployment and effectiveness of AI solutions. This challenge is particularly significant in industries like manufacturing and healthcare, where diverse systems must work together efficiently.

Ethical and Social Implications: The use of AI in computer vision, particularly for surveillance and facial recognition, raises ethical and social concerns. There is increasing scrutiny over privacy rights, surveillance, and the potential misuse of these technologies. Public concern and regulatory scrutiny can slow down the deployment of AI in certain applications, affecting overall market growth.

Lack of Skilled Workforce: The development and deployment of AI in computer vision require a specialized skill set, including expertise in machine learning, data science, and software engineering. There is a growing demand for professionals with these skills, but a shortage of qualified talent can limit the ability of companies to develop and implement AI solutions effectively, thereby hindering market growth.

Government Initiatives:

National AI Initiative Act of 2020 (United States): The National AI Initiative Act was enacted to accelerate AI research and development in the United States. The act allocates over $4 billion in federal funding for AI research, development, and deployment over five years. This initiative aims to position the U.S. as a leader in AI technologies, including computer vision, by supporting research institutes, promoting partnerships between the public and private sectors, and fostering AI education and workforce development.

EU AI Strategy: The European Union's AI Strategy, a core component of its digital policy, aims to make Europe a global leader in AI. With a budget of EUR 20 billion (USD 22 billion), the strategy includes specific initiatives to promote AI adoption in industries such as healthcare, automotive, and security. The strategy encourages the development of ethical and trustworthy AI systems, aligning with the rising demand for safe and reliable AI technologies.

Global AI in Computer Vision Market Future Market Outlook

The Global AI in Computer Vision Market is expected to continue its rapid growth, driven by technological advancements, increasing adoption of AI in various industries, and innovation in product offerings.

Future Market Trends:

Growth of Edge AI Solutions: The demand for edge AI solutions, which enable data processing closer to the source, is expected to grow. This model offers reduced latency, enhanced privacy, and improved efficiency for real-time applications such as autonomous driving and smart surveillance.

Increased Focus on Industry-Specific AI Applications: There will likely be a growing emphasis on developing industry-specific AI applications tailored to the unique needs of sectors such as healthcare, automotive, and retail. Advances in AI algorithms and computing power will drive the development of these applications.
Please Note: It will take 5-7 business days to complete the report upon order confirmation


1. Global AI in Computer Vision Market Overview
1.1. Definition and Scope
1.2. Market Taxonomy
1.3. Market Growth Rate
1.4. Market Segmentation Overview
2. Global AI in Computer Vision Market Size (in USD Bn), 2018-2023
2.1. Historical Market Size
2.2. Year-on-Year Growth Analysis
2.3. Key Market Developments and Milestones
3. Global AI in Computer Vision Market Analysis
3.1. Growth Drivers
3.1.1. Increasing Adoption of AI Technology
3.1.2. Technological Advancements
3.1.3. Expansion of Application Areas
3.2. Restraints
3.2.1. Interoperability and Integration
3.2.2. Ethical and Social Implications
3.2.3. Lack of Skilled Workforce
3.3. Opportunities
3.3.1. Growth of Edge AI Solutions
3.3.2. Increased Focus on Industry-Specific AI Applications
3.3.3. Expansion into Emerging Markets
3.4. Trends
3.4.1. Adoption of AI in Autonomous Systems
3.4.2. Integration with Smart City Projects
3.4.3. Increased Use of Real-Time Analytics
3.5. Government Regulation
3.5.1. National AI Initiative Act of 2020 (United States)
3.5.2. EU AI Strategy
3.5.3. AI Regulatory Sandboxes
3.5.4. Public-Private Partnerships in AI Development
3.6. SWOT Analysis
3.7. Stakeholder Ecosystem
3.8. Competitive Ecosystem
4. Global AI in Computer Vision Market Segmentation, 2023
4.1. By Component (in Value %)
4.1.1. Hardware
4.1.2. Software
4.1.3. Services
4.2. By Application (in Value %)
4.2.1. Image Recognition
4.2.2. Facial Recognition
4.2.3. Object Detection
4.3. By End-User (in Value %)
4.3.1. Automotive
4.3.2. Healthcare
4.3.3. Retail
4.3.4. Security
4.4. By Technology (in Value %)
4.4.1. Deep Learning
4.4.2. Machine Learning
4.4.3. Neural Networks
4.5. By Region (in Value %)
4.5.1. North America
4.5.2. Europe
4.5.3. Asia-Pacific
4.5.4. Latin America
4.5.5. Middle East & Africa
5. Global AI in Computer Vision Market Cross Comparison
5.1 Detailed Profiles of Major Companies
5.1.1. NVIDIA Corporation
5.1.2. Intel Corporation
5.1.3. IBM Corporation
5.1.4. Google LLC
5.1.5. Microsoft Corporation
5.1.6. Amazon Web Services (AWS)
5.1.7. Qualcomm Technologies
5.1.8. Apple Inc.
5.1.9. Siemens AG
5.1.10. Samsung Electronics
5.1.11. Facebook AI Research
5.1.12. Xilinx Inc.
5.1.13. Baidu, Inc.
5.1.14. Adobe Systems Incorporated
5.1.15. NEC Corporation
5.2 Cross Comparison Parameters (No. of Employees, Headquarters, Inception Year, Revenue)
6. Global AI in Computer Vision Market Competitive Landscape
6.1. Market Share Analysis
6.2. Strategic Initiatives
6.3. Mergers and Acquisitions
6.4. Investment Analysis
6.4.1. Venture Capital Funding
6.4.2. Government Grants
6.4.3. Private Equity Investments
7. Global AI in Computer Vision Market Regulatory Framework
7.1. Environmental Standards
7.2. Compliance Requirements
7.3. Certification Processes
8. Global AI in Computer Vision Future Market Size (in USD Bn), 2023-2028
8.1. Future Market Size Projections
8.2. Key Factors Driving Future Market Growth
9. Global AI in Computer Vision Future Market Segmentation, 2028
9.1. By Component (in Value %)
9.2. By Application (in Value %)
9.3. By End-User (in Value %)
9.4. By Technology (in Value %)
9.5. By Region (in Value %)
10. Global AI in Computer Vision Market Analysts Recommendations
10.1. TAM/SAM/SOM Analysis
10.2. Customer Cohort Analysis
10.3. Marketing Initiatives
10.4. White Space Opportunity Analysis
Disclaimer
Contact Us

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings