Global Machine Learning Technology in Artificial Intelligence Market to Reach US$35.9 Billion by 2030
The global market for Machine Learning Technology in Artificial Intelligence estimated at US$9.6 Billion in the year 2024, is expected to reach US$35.9 Billion by 2030, growing at a CAGR of 24.6% over the analysis period 2024-2030. Solutions Component, one of the segments analyzed in the report, is expected to record a 21.9% CAGR and reach US$19.6 Billion by the end of the analysis period. Growth in the Services Component segment is estimated at 28.7% CAGR over the analysis period.
The U.S. Market is Estimated at US$2.5 Billion While China is Forecast to Grow at 23.5% CAGR
The Machine Learning Technology in Artificial Intelligence market in the U.S. is estimated at US$2.5 Billion in the year 2024. China, the world`s second largest economy, is forecast to reach a projected market size of US$5.5 Billion by the year 2030 trailing a CAGR of 23.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 22.1% and 21.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 17.3% CAGR.
Global Machine Learning Technology in Artificial Intelligence – Key Trends & Drivers Summarized
Why Is Machine Learning the Core Engine Behind Modern AI Systems?
Machine learning is the foundational technology driving the evolution of artificial intelligence by enabling systems to learn patterns, make predictions, and improve over time without explicit programming. Unlike traditional rule-based automation, machine learning models derive insights directly from data, making them adaptive, scalable, and applicable to a wide range of tasks—from image and speech recognition to language processing, anomaly detection, and autonomous decision-making.
ML underpins most modern AI breakthroughs—whether in computer vision, natural language processing (NLP), reinforcement learning, or deep learning. Algorithms such as neural networks, decision trees, support vector machines, and gradient boosting are used to train models that power applications in virtual assistants, recommendation engines, autonomous vehicles, fraud detection, and smart robotics. This data-centric approach allows AI systems to respond dynamically to new inputs, significantly expanding the scope of intelligent automation.
How Are Algorithms, Architectures, and Infrastructure Advancing ML Capabilities?
The machine learning field is progressing rapidly due to advances in model architectures, computational power, and data processing techniques. Deep learning frameworks—especially convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers—have enabled major gains in vision and language tasks. Transfer learning and foundation models like BERT, GPT, and CLIP allow generalization across domains with minimal retraining, reducing time-to-value for ML initiatives.
On the infrastructure side, the proliferation of GPUs, TPUs, and AI accelerators has unlocked the training of ultra-large models on massive datasets. Parallel processing and distributed training are making large-scale ML practical and cost-effective. AutoML and neural architecture search (NAS) tools are automating model selection and hyperparameter tuning, lowering the barrier to ML development and enhancing efficiency for non-expert users. These trends are democratizing access to powerful ML capabilities across business and research domains.
Which Sectors Are Leveraging ML to Drive Intelligent Automation and Innovation?
Every major industry is now integrating ML to enhance efficiency, intelligence, and customer engagement. In healthcare, ML supports diagnostic imaging, genomics, drug discovery, and personalized medicine. In finance, it powers credit scoring, risk modeling, algorithmic trading, and regulatory compliance. The retail sector uses ML for demand forecasting, customer segmentation, and supply chain optimization, while the transportation sector relies on it for route planning, autonomous driving, and logistics management.
Education, entertainment, energy, and agriculture are also adopting ML to solve complex problems—from adaptive learning platforms to predictive maintenance in renewable energy systems. Government and security agencies use ML for surveillance, cybersecurity, and predictive policing. As enterprises increasingly pursue AI-driven transformation, machine learning is central to unlocking automation, reducing operational friction, and enabling new revenue models.
What Is Driving Growth in the Machine Learning Technology Market Within AI?
The growth in machine learning technology within the broader AI market is fueled by surging data availability, increasing compute capabilities, and the strategic need for intelligent automation. A key growth factor is the expanding deployment of ML in real-time systems—such as voice assistants, chatbots, and autonomous systems—requiring low-latency, high-reliability models. Enterprise digital transformation, cloud AI platforms, and open-source ecosystems are accelerating ML adoption across businesses of all sizes.
Regulatory incentives for AI safety, transparency, and fairness are prompting investments in explainable ML, ethical AI frameworks, and model governance. Additionally, the proliferation of edge AI and on-device learning is opening new markets for lightweight, embedded ML solutions in wearables, IoT, and mobile devices. These dynamics ensure machine learning will remain the central enabler of AI innovation across industries, nations, and digital economies in the years to come.
SCOPE OF STUDY:TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.
We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.
We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.
As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.
To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!
APRIL 2025: NEGOTIATION PHASE
Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.
JULY 2025 FINAL TARIFF RESET
Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.
Reciprocal and Bilateral Trade & Tariff Impact Analyses:
USA
CHINA
MEXICO
CANADA
EU
JAPAN
INDIA
176 OTHER COUNTRIES.
Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.
Please note: Reports are sold as single-site single-user licenses. Electronic versions require 24-48 hours as each copy is customized to the client with digital controls and custom watermarks. The Publisher uses digital controls protecting against copying and printing is restricted to one full copy to be used at the same location.Learn how to effectively navigate the market research process to help guide your organization on the journey to success.
Download eBook