Deep Learning in Drug Discovery Market Report and Forecast 2025-2034

The global deep learning in drug discovery market was valued at USD 4.63 Billion in 2024, driven by advancements in artificial intelligence technologies across the globe. The market is anticipated to grow at a CAGR of 21.90% during the forecast period of 2025-2034, with the values likely to reach USD 33.54 Billion by 2034.

Deep Learning in Drug Discovery Market Overview

Deep learning in drug discovery applies advanced AI techniques to analyze complex biological data, identify drug targets, and predict molecule interactions. It boosts efficiency in the process of discovering and optimizing new drugs. The market is witnessing rapid growth, due to advancements in artificial intelligence and machine learning. This technology accelerates drug discovery by analyzing vast datasets, identifying patterns, and predicting drug candidates. Its applications cut across lead discovery, optimization, and repurposing, streamlining research timelines, reducing the costs associated with research, and driving innovation in the pharmaceutical and biotechnology industries.

Deep Learning in Drug Discovery Market Growth Drivers

Advancements in Artificial Intelligence to Elevate the Market Value Significantly

The market is experiencing rapid growth, fueled by significant advancements in artificial intelligence. For instance, in September 2024, the United States Department of Health and Human Services launched the Target project, which uses deep learning and generative AI to speed up antibiotic discovery and tackle antimicrobial resistance. With these technologies, rapid molecule screening and in silico testing can be accelerated, thereby cutting costs and time. It addresses the need for new treatments and transforms the drug discovery market.

Deep Learning in Drug Discovery Market Trends

The market is witnessing several trends and developments to improve the current scenario. Some of the notable trends are as follows:

Integration of Quantum Computing

Quantum computing is increasingly being integrated with deep learning to solve complex drug discovery problems. It offers an improvement in computing abilities, through which the chemical properties and molecular interactions can be simulated faster. This accelerates the drug discovery process and opens the scope for tackling challenging diseases.

Use of Generative AI Models

Generative AI models are being widely used in drug discovery for the design of novel compounds. Given their ability to predict molecular structures with desirable properties, the trial-and-error phase in traditional drug design has been reduced considerably with increased efficiency in drug pipelines.

Collaboration Between AI Companies and Pharma Giants

One of the emerging trends in the market is partnerships between tech companies specializing in AI and pharmaceutical corporations. This combines technological expertise with domain knowledge, leading to significant breakthroughs in drug discovery, repurposing existing drugs, and finding treatments for unmet medical needs.

Application in Rare Disease Drug Discovery

Deep learning is revolutionizing the development of treatments for rare diseases, where limited data is available. By analyzing small datasets and identifying potential targets, AI accelerates progress in this underserved area, bringing new market opportunities.

Deep Learning in Drug Discovery Market Segmentation

The market report offers a detailed analysis of the market based on the following segments:

Market Breakup by Therapeutic Area

  • Oncological Disorders
  • Infectious Diseases
  • Neurological Disorders
  • Immunological Disorders
  • Endocrine Disorders
  • Cardiovascular Disorders
  • Respiratory Disorders
  • Eye Disorders
  • Musculoskeletal Disorders
  • Inflammatory Disorders
  • Others
Market Breakup by Process
  • Target Identification and Selection
  • Target Identification
  • Hit Identification Prioritization
  • Lead Optimization
  • Candidate Selection and Validation
Market Breakup by End User
  • Pharmaceutical Companies
  • Biotechnology Companies
  • Contract Research Organization
  • Academic and Research Institute
  • Others
Market Breakup by Region
  • North America
  • Europe
  • Asia Pacific
  • Latin America
  • Middle East and Africa
Deep Learning in Drug Discovery Market Share

Segmentation Based on Therapeutic Area to Witness Substantial Growth

Based on therapeutic area, the market is segmented into oncological disorders, infectious diseases, neurological disorders, immunological disorders, endocrine disorders, cardiovascular disorders, respiratory disorders, eye disorders, musculoskeletal disorders, inflammatory disorders, and others. Oncological disorders are expected to have a substantial share of the market. The high incidence of cancer and the urgency to discover novel therapies drive the adoption of deep learning to search for candidates, optimize treatment, and enhance precision medicine.

Deep Learning in Drug Discovery Market Analysis by Region

The market is divided into regions such as North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa. North America is expected to account for a significant share of the market because of its strong pharmaceutical industry, advanced AI infrastructure, and huge investments in R&D. The United States is a key contributor, with initiatives from tech giants and startups transforming the sector. Favorable regulation and strong collaboration between academia and industry also complement the region's dominance in this market.

Leading Players in the Deep Learning in Drug Discovery Market

The key features of the market report comprise patent analysis, grants analysis, funding and investment analysis, and strategic initiatives by the leading players. The major companies in the market are as follows:

Aiforia Technologies Oyj

Aiforia Technologies is one of the leading players in the market. The company was established in 2013 and has headquarters in Helsinki, Finland. Their flagship solutions Aiforia® Create and Aiforia® Studies use AI to transform pathology workflows with automated, GLP-compliant image analysis for preclinical research, accelerating discoveries in drug development.

Ardigen SA

Ardigen, established in 2015, is an AI leader for drug discovery. With headquarters located in Kraków, Poland, the company focuses on products such as phenAID, which is multi-modal and combines phenotypic and chemical data in enhanced predictions of Mode of Action (MoA) and bioactivity, speeding the delivery of novel drugs using phenotypic drug discovery.

Google LLC

Google LLC, through its subsidiaries and platforms, has significantly advanced the global deep learning in drug discovery market. For instance, DeepMind, a subsidiary of Alphabet Inc., introduced AlphaFold, an AI system capable of predicting protein structures with high accuracy. This innovative platform has been instrumental in understanding biological processes and accelerating drug discovery efforts.

Huawei Technologies Co., Ltd

Huawei Technologies Co., Ltd., located in Shenzhen, China, was founded in 1987. The company is a global leader in telecommunications and technology, providing innovative AI solutions. In deep learning drug discovery, Huawei has the leading product Pangu Drug Molecule Model, which utilizes AI technology to predict the effective drug compounds used for disease treatment, saving on research and development costs.

Other key players in the market include Aegicare (Shenzhen) Technology Co., Ltd, Berg LLC, Merative L.P, Nference, Inc., Nvidia Corporation, Owkin Inc., Phenomic AI Inc., Atomwise Inc., BenevolentAI Limited, and XtalPi Inc.

Key Questions Answered in the Deep Learning in Drug Discovery Market Report
  • What was the deep learning in drug discovery market value in 2024?
  • What is the deep learning in drug discovery market forecast outlook for 2025-2034?
  • What are the regional markets covered in the EMR report?
  • What is the market segmentation based on the therapeutic area?
  • What is the market breakup by process?
  • What is the market breakup based on the end user?
  • What major factors aid the deep learning in drug discovery market demand?
  • How has the market performed so far and how is it anticipated to perform in the coming years?
  • What are the major drivers, opportunities, and restraints in the market?
  • What are the major trends influencing the market?
  • Which regional market is expected to dominate the market share in the forecast period?
  • Which country is likely to experience elevated growth during the forecast period?
  • Who are the key players involved in the deep learning in drug discovery market?
  • What are the current unmet needs and challenges in the market?
  • How are partnerships, collaborations, mergers, and acquisitions among the key market players shaping the market dynamics?


1 Preface
1.1 Objectives of the Study
1.2 Key Assumptions
1.3 Report Coverage – Key Segmentation and Scope
1.4 Research Methodology
2 Executive Summary
3 Global Deep Learning in Drug Discovery Market Overview
3.1 Global Deep Learning in Drug Discovery Market Historical Value (2018-2024)
3.2 Global Deep Learning in Drug Discovery Market Forecast Value (2025-2034)
4 Vendor Positioning Analysis
4.1 Key Vendors
4.2 Prospective Leaders
4.3 Niche Leaders
4.4 Disruptors
5 Global Deep Learning in Drug Discovery Market Landscape*
5.1 Global Deep Learning in Drug Discovery Market: Developers Landscape
5.1.1 Analysis by Year of Establishment
5.1.2 Analysis by Company Size
5.1.3 Analysis by Region
5.2 Global Deep Learning in Drug Discovery Market: Product Landscape
5.2.1 Analysis by Therapeutic Area
5.2.2 Analysis by Process
6 Global Deep Learning in Drug Discovery Market Dynamics
6.1 Market Drivers and Constraints
6.2 SWOT Analysis
6.2.1 Strengths
6.2.2 Weaknesses
6.2.3 Opportunities
6.2.4 Threats
6.3 PESTEL Analysis
6.3.1 Political
6.3.2 Economic
6.3.3 Social
6.3.4 Technological
6.3.5 Legal
6.3.6 Environment
6.4 Porter’s Five Forces Model
6.4.1 Bargaining Power of Suppliers
6.4.2 Bargaining Power of Buyers
6.4.3 Threat of New Entrants
6.4.4 Threat of Substitutes
6.4.5 Degree of Rivalry
6.5 Key Demand Indicators
6.6 Key Price Indicators
6.7 Industry Events, Initiatives, and Trends
6.8 Value Chain Analysis
7 Global Deep Learning in Drug Discovery Market Segmentation (218-2034)
7.1 Global Deep Learning in Drug Discovery Market (2018-2034) by Therapeutic Area
7.1.1 Market Overview
7.1.2 Oncological Disorders
7.1.3 Infectious Diseases
7.1.4 Neurological Disorders
7.1.5 Immunological Disorders
7.1.6 Endocrine Disorders
7.1.7 Cardiovascular Disorders
7.1.8 Respiratory Disorders
7.1.9 Eye Disorders
7.1.10 Musculoskeletal Disorders
7.1.11 Inflammatory Disorders
7.1.12 Others
7.2 Global Deep Learning in Drug Discovery Market (2018-2034) by Process
7.2.1 Market Overview
7.2.2 Target Identification and Selection
7.2.3 Target Identification
7.2.4 Hit Identification Prioritization
7.2.5 Lead Optimization
7.2.6 Candidate Selection and Validation
7.3 Global Deep Learning in Drug Discovery Market (2018-2034) by End User
7.3.1 Market Overview
7.3.2 Pharmaceutical Companies
7.3.3 Biotechnology Companies
7.3.4 Contract Research Organization
7.3.5 Academic and Research Institute
7.3.6 Others
7.4 Global Deep Learning in Drug Discovery Market (2018-2034) by Region
7.4.1 Market Overview
7.4.2 North America
7.4.3 Europe
7.4.4 Asia Pacific
7.4.5 Latin America
7.4.6 Middle East and Africa
8 North America Deep Learning in Drug Discovery Market (218-2034)
8.1 North America Deep Learning in Drug Discovery Market (2018-2034) by Therapeutic Area
8.1.1 Market Overview
8.1.2 Oncological Disorders
8.1.3 Infectious Diseases
8.1.4 Neurological Disorders
8.1.5 Immunological Disorders
8.1.6 Endocrine Disorders
8.1.7 Cardiovascular Disorders
8.1.8 Respiratory Disorders
8.1.9 Eye Disorders
8.1.10 Musculoskeletal Disorders
8.1.11 Inflammatory Disorders
8.1.12 Others
8.2 North America Deep Learning in Drug Discovery Market (2018-2034) by Process
8.2.1 Market Overview
8.2.2 Target Identification and Selection
8.2.3 Target Identification
8.2.4 Hit Identification Prioritization
8.2.5 Lead Optimization
8.2.6 Candidate Selection and Validation
8.3 North America Deep Learning in Drug Discovery Market (2018-2034) by End User
8.3.1 Market Overview
8.3.2 Pharmaceutical Companies
8.3.3 Biotechnology Companies
8.3.4 Contract Research Organization
8.3.5 Academic and Research Institute
8.3.6 Others
8.4 North America Deep Learning in Drug Discovery Market (2018-2034) by Country
8.4.1 United States of America
8.4.2 Canada
9 Europe Deep Learning in Drug Discovery Market (218-2034)
9.1 Europe Deep Learning in Drug Discovery Market (2018-2034) by Therapeutic Area
9.1.1 Market Overview
9.1.2 Oncological Disorders
9.1.3 Infectious Diseases
9.1.4 Neurological Disorders
9.1.5 Immunological Disorders
9.1.6 Endocrine Disorders
9.1.7 Cardiovascular Disorders
9.1.8 Respiratory Disorders
9.1.9 Eye Disorders
9.1.10 Musculoskeletal Disorders
9.1.11 Inflammatory Disorders
9.1.12 Others
9.2 Europe Deep Learning in Drug Discovery Market (2018-2034) by Process
9.2.1 Market Overview
9.2.2 Target Identification and Selection
9.2.3 Target Identification
9.2.4 Hit Identification Prioritization
9.2.5 Lead Optimization
9.2.6 Candidate Selection and Validation
9.3 Europe Deep Learning in Drug Discovery Market (2018-2034) by End User
9.3.1 Market Overview
9.3.2 Pharmaceutical Companies
9.3.3 Biotechnology Companies
9.3.4 Contract Research Organization
9.3.5 Academic and Research Institute
9.3.6 Others
9.4 Europe Deep Learning in Drug Discovery Market (2018-2034) by Country
9.4.1 United Kingdom
9.4.2 Germany
9.4.3 France
9.4.4 Italy
9.4.5 Others
10 Asia Pacific Deep Learning in Drug Discovery Market (218-2034)
10.1 Asia Pacific Deep Learning in Drug Discovery Market (2018-2034) by Therapeutic Area
10.1.1 Market Overview
10.1.2 Oncological Disorders
10.1.3 Infectious Diseases
10.1.4 Neurological Disorders
10.1.5 Immunological Disorders
10.1.6 Endocrine Disorders
10.1.7 Cardiovascular Disorders
10.1.8 Respiratory Disorders
10.1.9 Eye Disorders
10.1.10 Musculoskeletal Disorders
10.1.11 Inflammatory Disorders
10.1.12 Others
10.2 Asia Pacific Deep Learning in Drug Discovery Market (2018-2034) by Process
10.2.1 Market Overview
10.2.2 Target Identification and Selection
10.2.3 Target Identification
10.2.4 Hit Identification Prioritization
10.2.5 Lead Optimization
10.2.6 Candidate Selection and Validation
10.3 Asia Pacific Deep Learning in Drug Discovery Market (2018-2034) by End User
10.3.1 Market Overview
10.3.2 Pharmaceutical Companies
10.3.3 Biotechnology Companies
10.3.4 Contract Research Organization
10.3.5 Academic and Research Institute
10.3.6 Others
10.4 Asia Pacific Deep Learning in Drug Discovery Market (2018-2034) by Country
10.4.1 China
10.4.2 Japan
10.4.3 India
10.4.4 ASEAN
10.4.5 Australia
10.4.6 Others
11 Latin America Deep Learning in Drug Discovery Market (218-2034)
11.1 Latin America Deep Learning in Drug Discovery Market (2018-2034) by Therapeutic Area
11.1.1 Market Overview
11.1.2 Oncological Disorders
11.1.3 Infectious Diseases
11.1.4 Neurological Disorders
11.1.5 Immunological Disorders
11.1.6 Endocrine Disorders
11.1.7 Cardiovascular Disorders
11.1.8 Respiratory Disorders
11.1.9 Eye Disorders
11.1.10 Musculoskeletal Disorders
11.1.11 Inflammatory Disorders
11.1.12 Others
11.2 Latin America Deep Learning in Drug Discovery Market (2018-2034) by Process
11.2.1 Market Overview
11.2.2 Target Identification and Selection
11.2.3 Target Identification
11.2.4 Hit Identification Prioritization
11.2.5 Lead Optimization
11.2.6 Candidate Selection and Validation
11.3 Latin America Deep Learning in Drug Discovery Market (2018-2034) by End User
11.3.1 Market Overview
11.3.2 Pharmaceutical Companies
11.3.3 Biotechnology Companies
11.3.4 Contract Research Organization
11.3.5 Academic and Research Institute
11.3.6 Others
11.4 Latin America Deep Learning in Drug Discovery Market (2018-2034) by Country
11.4.1 Brazil
11.4.2 Argentina
11.4.3 Mexico
11.4.4 Others
12 Middle East and Africa Deep Learning in Drug Discovery Market (218-2034)
12.1 Middle East and Africa Deep Learning in Drug Discovery Market (2018-2034) by Therapeutic Area
12.1.1 Market Overview
12.1.2 Oncological Disorders
12.1.3 Infectious Diseases
12.1.4 Neurological Disorders
12.1.5 Immunological Disorders
12.1.6 Endocrine Disorders
12.1.7 Cardiovascular Disorders
12.1.8 Respiratory Disorders
12.1.9 Eye Disorders
12.1.10 Musculoskeletal Disorders
12.1.11 Inflammatory Disorders
12.1.12 Others
12.2 Middle East and Africa Deep Learning in Drug Discovery Market (2018-2034) by Process
12.2.1 Market Overview
12.2.2 Target Identification and Selection
12.2.3 Target Identification
12.2.4 Hit Identification Prioritization
12.2.5 Lead Optimization
12.2.6 Candidate Selection and Validation
12.3 Middle East and Africa Deep Learning in Drug Discovery Market (2018-2034) by End User
12.3.1 Market Overview
12.3.2 Pharmaceutical Companies
12.3.3 Biotechnology Companies
12.3.4 Contract Research Organization
12.3.5 Academic and Research Institute
12.3.6 Others
12.4 Middle East and Africa Deep Learning in Drug Discovery Market (2018-2034) by Country
12.4.1 Saudi Arabia
12.4.2 United Arab Emirates
12.4.3 Nigeria
12.4.4 South Africa
12.4.5 Others
13 Patent Analysis
13.1 Analysis by Type of Patent
13.2 Analysis by Publication Year
13.3 Analysis by Issuing Authority
13.4 Analysis by Patent Age
13.5 Analysis by CPC Analysis
13.6 Analysis by Patent Valuation
14 Grants Analysis
14.1 Analysis by Year
14.2 Analysis by Amount Awarded
14.3 Analysis by Issuing Authority
14.4 Analysis by Grant Application
14.5 Analysis by Funding Institute
14.6 Analysis by NIH Departments
14.7 Analysis by Recipient Organization
15 Funding and Investment Analysis
15.1 Analysis by Funding Instances
15.2 Analysis by Drug Class of Funding
15.3 Analysis by Funding Amount
15.4 Analysis by Leading Players
15.5 Analysis by Leading Investors
15.6 Analysis by Geography
16 Strategic Initiatives
16.1 Analysis by Partnership Instances
16.2 Analysis by Drug Class of Partnership
16.3 Analysis by Leading Players
16.4 Analysis by Geography
17 Supplier Landscape
17.1 Market Share Analysis, By Region (Top 5 Companies)
17.1.1 Market Share Analysis: Global
17.1.2 Market Share Analysis: North America
17.1.3 Market Share Analysis: Europe
17.1.4 Market Share Analysis: Asia Pacific
17.1.5 Market Share Analysis: Others
17.2 Aegicare (Shenzhen) Technology Co., Ltd
17.2.1 Financial Analysis
17.2.2 Product Portfolio
17.2.3 Demographic Reach and Achievements
17.2.4 Company News and Development
17.2.5 Certifications
17.3 Aiforia Technologies Oyj
17.3.1 Financial Analysis
17.3.2 Product Portfolio
17.3.3 Demographic Reach and Achievements
17.3.4 Company News and Development
17.3.5 Certifications
17.4 Ardigen SA
17.4.1 Financial Analysis
17.4.2 Product Portfolio
17.4.3 Demographic Reach and Achievements
17.4.4 Company News and Development
17.4.5 Certifications
17.5 Berg LLC
17.5.1 Financial Analysis
17.5.2 Product Portfolio
17.5.3 Demographic Reach and Achievements
17.5.4 Company News and Development
17.5.5 Certifications
17.6 Google LLC
17.6.1 Financial Analysis
17.6.2 Product Portfolio
17.6.3 Demographic Reach and Achievements
17.6.4 Company News and Development
17.6.5 Certifications
17.7 Huawei Technologies Co., Ltd
17.7.1 Financial Analysis
17.7.2 Product Portfolio
17.7.3 Demographic Reach and Achievements
17.7.4 Company News and Development
17.7.5 Certifications
17.8 Merative L.P
17.8.1 Financial Analysis
17.8.2 Product Portfolio
17.8.3 Demographic Reach and Achievements
17.8.4 Company News and Development
17.8.5 Certifications
17.9 Nference, Inc
17.9.1 Financial Analysis
17.9.2 Product Portfolio
17.9.3 Demographic Reach and Achievements
17.9.4 Company News and Development
17.9.5 Certifications
17.10 Nvidia Corporation
17.10.1 Financial Analysis
17.10.2 Product Portfolio
17.10.3 Demographic Reach and Achievements
17.10.4 Company News and Development
17.10.5 Certifications
17.11 Owkin Inc.
17.11.1 Financial Analysis
17.11.2 Product Portfolio
17.11.3 Demographic Reach and Achievements
17.11.4 Company News and Development
17.11.5 Certifications
17.12 Phenomic AI Inc.
17.12.1 Financial Analysis
17.12.2 Product Portfolio
17.12.3 Demographic Reach and Achievements
17.12.4 Company News and Development
17.12.5 Certifications
17.13 Atomwise Inc
17.13.1 Financial Analysis
17.13.2 Product Portfolio
17.13.3 Demographic Reach and Achievements
17.13.4 Company News and Development
17.13.5 Certifications
17.14 BenevolentAI Limited
17.14.1 Financial Analysis
17.14.2 Product Portfolio
17.14.3 Demographic Reach and Achievements
17.14.4 Company News and Development
17.14.5 Certifications
17.15 XtalPi Inc
17.15.1 Financial Analysis
17.15.2 Product Portfolio
17.15.3 Demographic Reach and Achievements
17.15.4 Company News and Development
17.15.5 Certifications
18 Global Deep Learning in Drug Discovery Market – Distribution Model (Additional Insight)
18.1 Overview
18.2 Potential Distributors
18.3 Key Parameters for Distribution Partner Assessment
19 Key Opinion Leaders (KOL) Insights (Additional Insight)

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings