Automated Machine Learning Market - Growth, Share, Opportunities & Competitive Analysis, 2024 – 2032

Market Overview
The Automated Machine Learning (AutoML) Market is projected to grow from USD 1.012 billion in 2024 to USD 20.216 billion by 2032, achieving a remarkable compound annual growth rate (CAGR) of 45.4% during the forecast period.

The AutoML market is driven by the increasing demand for advanced data analysis and predictive modeling solutions across industries. Businesses are increasingly leveraging AutoML to streamline machine learning workflows, reduce reliance on data scientists, and accelerate the deployment of AI-powered applications. The integration of AutoML with cloud computing platforms boosts scalability and accessibility, fueling further adoption. Investments in AI technologies and the growing volume of big data contribute significantly to the market's expansion. Additionally, advancements in natural language processing (NLP), image recognition, and deep learning algorithms are advancing the development of more sophisticated AutoML tools. Trends such as the integration of explainable AI (XAI) to address transparency concerns and the adoption of no-code and low-code platforms are empowering non-technical users to effectively harness AI capabilities. As industries like healthcare, finance, and e-commerce increasingly embrace data-driven decision-making, the AutoML market is poised for continued growth and innovation.

Market Drivers

Growing Need for Operational Efficiency
Businesses face continuous pressure to enhance operational efficiency while minimizing costs. AutoML addresses this by automating tasks like feature engineering, model selection, and hyperparameter tuning, thus enabling faster, scalable deployment of machine learning models without requiring extensive technical expertise. This automation allows organizations to allocate resources more effectively, focusing on strategic initiatives and innovation, ultimately improving operational efficiency and accelerating growth.

Market Challenges Analysis

High Implementation Costs and Complexity
One of the primary challenges in the AutoML market is the high implementation costs associated with deploying these technologies. While AutoML simplifies the machine learning process, the initial investment in infrastructure, software, and skilled personnel can be prohibitively expensive, especially for small and medium-sized enterprises (SMEs). Furthermore, integrating AutoML systems with existing workflows and technologies often requires significant customization, adding to both complexity and cost. In addition, robust data preparation and cleaning are essential, as inaccurate or inconsistent data can undermine the effectiveness of AutoML solutions. Companies must invest considerable resources to address these challenges, which can delay the return on investment. The lack of standardization in AutoML platforms further complicates deployment, as businesses may struggle to find solutions that align with their long-term objectives. These financial and operational barriers limit the broader adoption of AutoML, particularly in cost-sensitive sectors.

Segmentation

By Offering:

Solutions

Platform

Software

Deployment

Cloud

On-premises

Services

Consulting Services

Deployment & Integration

Training, Support, and Maintenance

By Application:

Data Processing

Feature Engineering

Model Selection

Hyperparameter Optimization & Tuning

Model Ensembling

Other Applications

By Vertical:

Banking, Financial Services, and Insurance

Retail & E-commerce

Healthcare & Life Sciences

IT & ITeS

Telecommunications

Government & Defense

Manufacturing

Automotive, Transportation, and Logistics

Media & Entertainment

Other Verticals

By Geography:

North America

U.S.

Canada

Mexico

Europe

Germany

France

U.K.

Italy

Spain

Rest of Europe

Asia Pacific

China

Japan

India

South Korea

Southeast Asia

Rest of Asia Pacific

Latin America

Brazil

Argentina

Rest of Latin America

Middle East & Africa

GCC Countries

South Africa

Rest of the Middle East and Africa

Key Player Analysis:

Google (US)

AWS

IBM

Baidu (China)

Alteryx (US)

Salesforce (US)

Dataiku (France)

Akkio (US)

Alibaba Cloud (China)

SparkCognition (US)

H2O.ai (US)

Boost.ai (Norway)







CHAPTER NO. 1 : INTRODUCTION
1.1.1. Report Description
Purpose of the Report
USP & Key Offerings
1.1.2. Key Benefits for Stakeholders
1.1.3. Target Audience
1.1.4. Report Scope
CHAPTER NO. 2 : EXECUTIVE SUMMARY
2.1. Automated Machine Learning Market Snapshot
2.1.1. Automated Machine Learning Market, 2018 - 2032 (USD Million)
CHAPTER NO. 3 : Automated Machine Learning Market – INDUSTRY ANALYSIS
3.1. Introduction
3.2. Market Drivers
3.3. Market Restraints
3.4. Market Opportunities
3.5. Porter’s Five Forces Analysis
CHAPTER NO. 4 : ANALYSIS COMPETITIVE LANDSCAPE
4.1. Company Market Share Analysis – 2023
4.2. Automated Machine Learning Market Company Revenue Market Share, 2023
4.3. Company Assessment Metrics, 2023
4.4. Start-ups /SMEs Assessment Metrics, 2023
4.5. Strategic Developments
4.6. Key Players Product Matrix
CHAPTER NO. 5 : PESTEL & ADJACENT MARKET ANALYSIS
CHAPTER NO. 6 : Automated Machine Learning Market – BY BASED ON OFFERING ANALYSIS
CHAPTER NO. 7 : Automated Machine Learning Market – BY BASED ON APPLICATION ANALYSIS
CHAPTER NO. 8 : Automated Machine Learning Market – BY BASED ON VERTICAL ANALYSIS
CHAPTER NO. 9 : Automated Machine Learning Market – BY BASED ON GEOGRAPHY ANALYSIS
CHAPTER NO. 10 : COMPANY PROFILES
9.1. Google (US)
9.1.1. Company Overview
9.1.2. Product Portfolio
9.1.3. SWOT Analysis
9.1.4. Business Strategy
9.1.5. Financial Overview
9.2. AWS
9.3. IBM
9.4. Baidu (China)
9.5. Alteryx (US)
9.6. Salesforce (US)
9.7. Dataiku (France)
9.8. Akkio (US)
9.9. Alibaba Cloud (China)
9.10. SparkCognition (US)
9.11. H2O.ai (US)
9.12. Boost.ai (Norway)

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings