Saudi Arabia Generative AI Market Overview, 2030

Saudi Arabia is experiencing a transformative surge in the field of generative artificial intelligence (AI), aligning with its Vision 2030 strategy that seeks to diversify the economy and modernize the public sector. Generative AI, in this context, is defined as a class of machine learning models capable of autonomously generating content ranging from text and images to code, audio, and even design concepts. The scope of generative AI in Saudi Arabia spans public governance, energy, logistics, healthcare, education, and digital entertainment, reflecting a wide array of national priorities. The methodology employed in its adoption is notably holistic, integrating centralized government led strategies with academic research, private sector incubation, and cross border knowledge exchange. National programs like the Saudi Data and Artificial Intelligence Authority (SDAIA) and initiatives under the National Strategy for Data & AI (NSDAI) serve as key enablers, offering structured frameworks for deploying and governing AI responsibly and at scale. The momentum in Saudi Arabia’s generative AI market is both rapid and far-reaching. A combination of strong digital infrastructure, high government investment, and a young, tech-savvy population is accelerating adoption. In healthcare, generative AI is driving predictive diagnostics, radiology assistance, and patient centric virtual agents. The oil and gas sector utilizes AI models for predictive maintenance and real time anomaly detection, significantly boosting operational efficiency. The financial sector is automating compliance, fraud detection, and customer service through AI-generated insights and chatbots. In smart cities like NEOM, generative AI is being applied to urban planning, 3D visualization, and digital twin modeling. Educational platforms are also leveraging generative tools to personalize learning, translate academic content, and foster critical thinking.

According to the research report ""Saudi Arabia Global Generative AI Market Overview, 2030,"" published by Bonafide Research, the Saudi Arabia Global Generative AI Market is anticipated to grow at more than 36.85% CAGR from 2025 to 2030. Major players like SDAIA, the King Abdulaziz City for Science and Technology (KACST), and Aramco’s Digital Transformation arm lead large scale deployments, while emerging ventures such as Mozn, Quant, and Tonomus at NEOM contribute agility and innovation to the national AI landscape. These players are supported by dynamic tech hubs like The Garage in Riyadh and the Misk Innovation ecosystem, which provide startups with funding, mentorship, and regulatory facilitation. Strategic deals and funding trends highlight Saudi Arabia’s shift toward sovereign AI capabilities, with recent investments focusing on Arabic centric language models, energy-tech AI, and cross-sector platform solutions. Notable collaborations with global leaders such as IBM, Huawei, and Nvidia underscore the Kingdom’s intent to blend local priorities with international expertise, ensuring its AI growth is both grounded and globally competitive. Saudi Arabia has introduced comprehensive policies that guide ethical AI development and use which include principles around transparency, data privacy, and algorithmic fairness, as well as sector specific compliance mandates. The government’s Ethical AI Framework ensures that innovation does not outpace accountability. Hospitals use AI tools to assist rather than replace clinicians; government services use generative models to enhance citizen engagement through natural language interfaces. If harnessed inclusively, generative AI could redefine national productivity, catalyze job creation in tech driven sectors, and elevate Saudi Arabia’s influence in the global digital economy.

In Saudi Arabia, the generative AI market by component is distinctly shaped by a combination of advanced software solutions and comprehensive services, each playing a pivotal role in accelerating digital transformation across sectors. The software segment primarily includes a range of generative AI tools and platforms such as APIs, SaaS-based applications, SDKs, and prebuilt models tailored for various AI-driven tasks. These software solutions enable functionalities like natural language text generation, automated code completion, image synthesis, and seamless enterprise AI integration. Globally recognized platforms like ChatGPT, GitHub Copilot, Jasper, and Canva’s Magic Studio have gained considerable traction in the Kingdom, often customized to incorporate Arabic language nuances and regional data privacy requirements. Moreover, Saudi-based initiatives have begun developing proprietary AI software aligned with the Kingdom’s Vision 2030, focusing on domain-specific applications in energy, healthcare, and government services. Complementing this, the service segment involves professional activities essential for successful AI adoption, including AI consulting, bespoke model customization, system integration, MLOps (model operations), comprehensive training, and ongoing technical support. This segment is driven by a blend of local AI startups and large system integrators, supported by government-backed innovation hubs such as the Saudi Data and Artificial Intelligence Authority (SDAIA) and technology clusters like Riyadh’s King Abdullah Financial District. These entities collaborate closely to ensure generative AI solutions are not only technologically robust but also contextually relevant, compliant with national regulations, and scalable

At the forefront are transformer models, neural architectures based on self-attention mechanisms that process sequential data efficiently. These models, exemplified by GPT and BERT, are fundamental in developing large language models (LLMs) capable of handling multilingual and multi modal inputs critical in Saudi Arabia’s multilingual environment. Transformer-based LLMs enable a broad spectrum of applications including intelligent chatbots, automated translation services, and content generation tailored for both Arabic and English speakers. Complementing transformers are Generative Adversarial Networks (GANs), which consist of two neural networks working in tandem to generate realistic synthetic outputs. GANs are widely deployed in Saudi Arabia for high-quality image generation, digital media creation, and augmented reality applications within entertainment and real estate sectors. Additionally, diffusion networks which produce high-fidelity images through iterative noise reduction are gaining prominence for urban planning and cultural heritage digital preservation, offering superior control and realism compared to GANs. In sectors requiring anomaly detection and unsupervised learning, such as finance and energy, variational autoencoders (VAEs) are utilized to generate latent data representations and model complex distributions. Other emerging technologies like Recurrent Neural Networks (RNNs) remain relevant for specific time-series forecasting tasks, while Neural Radiance Fields (NeRFs) are advancing volumetric 3D modeling, supporting AR/VR applications and immersive simulations in Saudi Arabia’s burgeoning digital tourism and education initiatives.

Large Language Models (LLMs) such as GPT-4, Claude, and LLaMA serve as the backbone for natural language understanding and generation tasks within government portals, educational platforms, and customer service bots. Recognizing the importance of linguistic and cultural context, there is active development and fine-tuning of these models for Arabic dialects and regional vernaculars, enabling more nuanced and effective AI interactions. In the realm of visual content, image and video generative models driven by GANs and diffusion models like Midjourney and RunwayML are harnessed to enhance marketing campaigns, cultural heritage digitization, and real estate visualization, helping sectors visualize concepts before physical realization. The rise of multi-modal generative models, capable of processing and generating across text, image, audio, and video modalities, further extends Saudi Arabia’s AI capabilities. Models like GPT-4o, Gemini, and Gato are being explored to enable integrated solutions for healthcare diagnostics, smart city infrastructure, and interactive educational tools, providing seamless, context-rich AI experiences. Additionally, niche generative models addressing audio synthesis, code generation, and 3D content creation including CodeGen for software automation, Vall-E for speech synthesis, and NeRF-based 3D renderers are becoming integral to the Kingdom’s AI landscape. These specialized models support innovations in virtual assistants, automated coding for enterprise efficiency, and immersive AR/VR applications, broadening the scope of generative AI beyond traditional boundaries.


1. Executive Summary
2. Market Structure
2.1. Market Considerate
2.2. Assumptions
2.3. Limitations
2.4. Abbreviations
2.5. Sources
2.6. Definitions
3. Research Methodology
3.1. Secondary Research
3.2. Primary Data Collection
3.3. Market Formation & Validation
3.4. Report Writing, Quality Check & Delivery
4. Saudi Arabia Geography
4.1. Population Distribution Table
4.2. Saudi Arabia Macro Economic Indicators
5. Market Dynamics
5.1. Key Insights
5.2. Recent Developments
5.3. Market Drivers & Opportunities
5.4. Market Restraints & Challenges
5.5. Market Trends
5.5.1. XXXX
5.5.2. XXXX
5.5.3. XXXX
5.5.4. XXXX
5.5.5. XXXX
5.6. Supply chain Analysis
5.7. Policy & Regulatory Framework
5.8. Industry Experts Views
6. Saudi Arabia Generative AI Market Overview
6.1. Market Size, By Value
6.2. Market Size and Forecast, By Component
6.3. Market Size and Forecast, By Technology
6.4. Market Size and Forecast, By Model
6.5. Market Size and Forecast, By Region
7. Saudi Arabia Generative AI Market Segmentations
7.1. Saudi Arabia Generative AI Market, By Component
7.1.1. Saudi Arabia Generative AI Market Size, By Software, 2019-2030
7.1.2. Saudi Arabia Generative AI Market Size, By Service, 2019-2030
7.2. Saudi Arabia Generative AI Market, By Technology
7.2.1. Saudi Arabia Generative AI Market Size, By Transformer Models, 2019-2030
7.2.2. Saudi Arabia Generative AI Market Size, By Generative Adversarial Networks (GANs), 2019-2030
7.2.3. Saudi Arabia Generative AI Market Size, By Diffusion Networks, 2019-2030
7.2.4. Saudi Arabia Generative AI Market Size, By Variational Auto-encoders, 2019-2030
7.2.5. Saudi Arabia Generative AI Market Size, By Others (Recurrent Neural Networks , Neural Radiance Fields), 2019-2030
7.3. Saudi Arabia Generative AI Market, By Model
7.3.1. Saudi Arabia Generative AI Market Size, By Large Language Models, 2019-2030
7.3.2. Saudi Arabia Generative AI Market Size, By Image & Video Generative Models, 2019-2030
7.3.3. Saudi Arabia Generative AI Market Size, By Multi-modal Generative Models, 2019-2030
7.3.4. Saudi Arabia Generative AI Market Size, By Others (Audio, Code, 3D, etc.), 2019-2030
7.4. Saudi Arabia Generative AI Market, By Region
7.4.1. Saudi Arabia Generative AI Market Size, By North, 2019-2030
7.4.2. Saudi Arabia Generative AI Market Size, By East, 2019-2030
7.4.3. Saudi Arabia Generative AI Market Size, By West, 2019-2030
7.4.4. Saudi Arabia Generative AI Market Size, By South, 2019-2030
8. Saudi Arabia Generative AI Market Opportunity Assessment
8.1. By Component, 2025 to 2030
8.2. By Technology, 2025 to 2030
8.3. By Model, 2025 to 2030
8.4. By Region, 2025 to 2030
9. Competitive Landscape
9.1. Porter's Five Forces
9.2. Company Profile
9.2.1. Company 1
9.2.2. Company 2
9.2.3. Company 3
9.2.4. Company 4
9.2.5. Company 5
9.2.6. Company 6
9.2.7. Company 7
9.2.8. Company 8
10. Strategic Recommendations
11. Disclaimer
List of Figures
Figure 1: Saudi Arabia Generative AI Market Size By Value (2019, 2024 & 2030F) (in USD Million)
Figure 2: Market Attractiveness Index, By Component
Figure 3: Market Attractiveness Index, By Technology
Figure 4: Market Attractiveness Index, By Model
Figure 5: Market Attractiveness Index, By Region
Figure 6: Porter's Five Forces of Saudi Arabia Generative AI Market
List of Tables
Table 1: Influencing Factors for Generative AI Market, 2024
Table 2: Saudi Arabia Generative AI Market Size and Forecast, By Component (2019 to 2030F) (In USD Million)
Table 3: Saudi Arabia Generative AI Market Size and Forecast, By Technology (2019 to 2030F) (In USD Million)
Table 4: Saudi Arabia Generative AI Market Size and Forecast, By Model (2019 to 2030F) (In USD Million)
Table 5: Saudi Arabia Generative AI Market Size and Forecast, By Region (2019 to 2030F) (In USD Million)
Table 6: Saudi Arabia Generative AI Market Size of Software (2019 to 2030) in USD Million
Table 7: Saudi Arabia Generative AI Market Size of Service (2019 to 2030) in USD Million
Table 8: Saudi Arabia Generative AI Market Size of Transformer Models (2019 to 2030) in USD Million
Table 9: Saudi Arabia Generative AI Market Size of Generative Adversarial Networks (GANs) (2019 to 2030) in USD Million
Table 10: Saudi Arabia Generative AI Market Size of Diffusion Networks (2019 to 2030) in USD Million
Table 11: Saudi Arabia Generative AI Market Size of Variational Auto-encoders (2019 to 2030) in USD Million
Table 12: Saudi Arabia Generative AI Market Size of Others (RNNs(Recurrent Neural Networks), NeRFs(Neural Radiance Fields)) (2019 to 2030) in USD Million
Table 13: Saudi Arabia Generative AI Market Size of Large Language Models (2019 to 2030) in USD Million
Table 14: Saudi Arabia Generative AI Market Size of Image & Video Generative Models (2019 to 2030) in USD Million
Table 15: Saudi Arabia Generative AI Market Size of Multi-modal Generative Models (2019 to 2030) in USD Million
Table 16: Saudi Arabia Generative AI Market Size of Others (Audio, Code, 3D, etc.) (2019 to 2030) in USD Million
Table 17: Saudi Arabia Generative AI Market Size of North (2019 to 2030) in USD Million
Table 18: Saudi Arabia Generative AI Market Size of East (2019 to 2030) in USD Million
Table 19: Saudi Arabia Generative AI Market Size of West (2019 to 2030) in USD Million
Table 20: Saudi Arabia Generative AI Market Size of South (2019 to 2030) in USD Million

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings