
AI for Customer Service - Company Evaluation Report, 2025 (Abridged Report)
Description
The AI for Customer Service Companies Quadrant is a comprehensive industry analysis that provides valuable insights into the global market for AI for Customer Service. This quadrant offers a detailed evaluation of key market players, technological advancements, product innovations, and emerging trends shaping the industry. MarketsandMarkets 360 Quadrants evaluated over 100 companies, of which the Top 32 AI for Customer Service Companies were categorized and recognized as quadrant leaders.
AI for customer service leverages artificial intelligence technologies to enhance all facets of customer support by enabling organizations to automate experiences, streamline processes, and boost agent productivity. AI-powered tools—such as chatbots, voice bots, workflow automation, recommendation engines, and diagnostic systems—offer round-the-clock, personalized, data-driven support designed to elevate the agent and customer experience. These solutions analyze data from customer interactions to resolve or assist with queries in real time. AI-based agent assistance tools empower support teams within major enterprises to deliver faster, more efficient resolutions, while also generating customized responses for individual customers. The emergence of generative AI (Gen AI) in customer service further enhances this landscape by enabling more natural, personalized interactions and real-time, tailored communication.
Another critical area where AI is transforming customer service is in backend operations. It helps streamline support infrastructure, boosting efficiency and enabling quicker responsiveness for both agents and customers. The customer service sector is increasingly adopting AI to develop intelligent support ecosystems that enrich the experience for users and support teams alike. From adaptive chatbots to AI-powered virtual agents, these technologies are reshaping how services are delivered—offering seamless, efficient assistance. AI’s integration into service delivery improves customer satisfaction, sharpens support strategies, and optimizes operational workflows.
The 360 Quadrant maps the AI for Customer Service companies based on criteria such as revenue, geographic presence, growth strategies, investments, and sales strategies for the market presence of the AI for Customer Service quadrant. The top criteria for product footprint evaluation included By END USER (BFSI, Media & Entertainment, Telecommunications, Government & Public Sector, Healthcare & Life Sciences, Manufacturing, Retail & E-Commerce, Technology & Software, Travel & Hospitality, Transportation & Logistics, Other End Users), By PRODUCT (Type, By Deployment Mode, By Customer Service Delivery Mode, By Functional Area), and By CUSTOMER INTERACTION CHANNEL (Text and Email, Voice, Video/Visual, Omnichannel).
Key Players
Key players in the Ai for Customer Service market include major global corporations and specialized innovators such as Microsoft, Ibm, Google, Aws, Salesforce, Atlassian, Servicenow, Zendesk, Sap, Sprinklr, Openai, Aisera, Uipath, Hubspot, Nice, Intercom, Qualtrics, Freshworks, Liveperson, Helpshift, Yellow.Ai, Cogito, Smartaction, Talkdesk, FIVE9, Ringcentral, Nextiva, Kore.Ai, Dynamic Yield, Jiohaptik, Oracle, and Afiniti. These companies are actively investing in research and development, forming strategic partnerships, and engaging in collaborative initiatives to drive innovation, expand their global footprint, and maintain a competitive edge in this rapidly evolving market.
Top 3 Companies
Microsoft
Microsoft holds a significant market share due to its strategic focus on AI technologies, such as generative AI and cloud-based solutions, enhancing the customer service landscape. Their robust product portfolio, including Microsoft Dynamics 365, offers AI-driven capabilities that improve customer engagement and operational efficiency. The company's positioning strategy includes expansion through partnerships, such as with HCLTech, to innovate in customer service solutions. Microsoft's product portfolio is diverse, catering to various sectors with a focus on integrating AI to streamline customer interactions.
IBM
IBM's strong position in the customer service AI market is anchored by its Watsonx platform, which enhances data processing and analytics, thereby improving customer service delivery. The company excels in providing hybrid cloud and AI solutions, which solidifies its presence across different industries. IBM's strategy includes significant collaborations, such as with Elasticsearch, to enhance conversational AI capabilities. Despite facing competitive pressures, IBM's market share and extensive product offerings make it a formidable player.
Google
Google leads the market with its advanced AI technologies, underpinned by their Gemini model, which offers superior data analysis and decision-making capabilities. The company's robust AI product portfolio is continuously expanded through strategic partnerships, like the one with Tata Consultancy Services, to enhance AI adoption in diverse sectors. These products aim to offer seamless, efficient, and personalized customer interactions, reinforcing Google’s market dominance. Their strategic expansion through partnerships and innovations keeps them competitive and addresses diverse customer needs.
AI for customer service leverages artificial intelligence technologies to enhance all facets of customer support by enabling organizations to automate experiences, streamline processes, and boost agent productivity. AI-powered tools—such as chatbots, voice bots, workflow automation, recommendation engines, and diagnostic systems—offer round-the-clock, personalized, data-driven support designed to elevate the agent and customer experience. These solutions analyze data from customer interactions to resolve or assist with queries in real time. AI-based agent assistance tools empower support teams within major enterprises to deliver faster, more efficient resolutions, while also generating customized responses for individual customers. The emergence of generative AI (Gen AI) in customer service further enhances this landscape by enabling more natural, personalized interactions and real-time, tailored communication.
Another critical area where AI is transforming customer service is in backend operations. It helps streamline support infrastructure, boosting efficiency and enabling quicker responsiveness for both agents and customers. The customer service sector is increasingly adopting AI to develop intelligent support ecosystems that enrich the experience for users and support teams alike. From adaptive chatbots to AI-powered virtual agents, these technologies are reshaping how services are delivered—offering seamless, efficient assistance. AI’s integration into service delivery improves customer satisfaction, sharpens support strategies, and optimizes operational workflows.
The 360 Quadrant maps the AI for Customer Service companies based on criteria such as revenue, geographic presence, growth strategies, investments, and sales strategies for the market presence of the AI for Customer Service quadrant. The top criteria for product footprint evaluation included By END USER (BFSI, Media & Entertainment, Telecommunications, Government & Public Sector, Healthcare & Life Sciences, Manufacturing, Retail & E-Commerce, Technology & Software, Travel & Hospitality, Transportation & Logistics, Other End Users), By PRODUCT (Type, By Deployment Mode, By Customer Service Delivery Mode, By Functional Area), and By CUSTOMER INTERACTION CHANNEL (Text and Email, Voice, Video/Visual, Omnichannel).
Key Players
Key players in the Ai for Customer Service market include major global corporations and specialized innovators such as Microsoft, Ibm, Google, Aws, Salesforce, Atlassian, Servicenow, Zendesk, Sap, Sprinklr, Openai, Aisera, Uipath, Hubspot, Nice, Intercom, Qualtrics, Freshworks, Liveperson, Helpshift, Yellow.Ai, Cogito, Smartaction, Talkdesk, FIVE9, Ringcentral, Nextiva, Kore.Ai, Dynamic Yield, Jiohaptik, Oracle, and Afiniti. These companies are actively investing in research and development, forming strategic partnerships, and engaging in collaborative initiatives to drive innovation, expand their global footprint, and maintain a competitive edge in this rapidly evolving market.
Top 3 Companies
Microsoft
Microsoft holds a significant market share due to its strategic focus on AI technologies, such as generative AI and cloud-based solutions, enhancing the customer service landscape. Their robust product portfolio, including Microsoft Dynamics 365, offers AI-driven capabilities that improve customer engagement and operational efficiency. The company's positioning strategy includes expansion through partnerships, such as with HCLTech, to innovate in customer service solutions. Microsoft's product portfolio is diverse, catering to various sectors with a focus on integrating AI to streamline customer interactions.
IBM
IBM's strong position in the customer service AI market is anchored by its Watsonx platform, which enhances data processing and analytics, thereby improving customer service delivery. The company excels in providing hybrid cloud and AI solutions, which solidifies its presence across different industries. IBM's strategy includes significant collaborations, such as with Elasticsearch, to enhance conversational AI capabilities. Despite facing competitive pressures, IBM's market share and extensive product offerings make it a formidable player.
Google leads the market with its advanced AI technologies, underpinned by their Gemini model, which offers superior data analysis and decision-making capabilities. The company's robust AI product portfolio is continuously expanded through strategic partnerships, like the one with Tata Consultancy Services, to enhance AI adoption in diverse sectors. These products aim to offer seamless, efficient, and personalized customer interactions, reinforcing Google’s market dominance. Their strategic expansion through partnerships and innovations keeps them competitive and addresses diverse customer needs.
- Tables List
- Table 1 Ai For Customer Service Market: Ecosystem
- Table 2 Ai For Customer Service Market: Detailed List Of
- Conferences And Events, 2025–2026
- Table 3 Patents Filed, 2014–2024
- Table 4 Ai For Customer Service Market: List Of Patents Granted, 2023–2024
- Table 5 Ai For Customer Service Market: Overview Of Strategies Adopted
- By Key Vendors, 2020–2024
- Table 6 Ai For Customer Service Market: Degree Of Competition, 2023
- Table 7 Ai For Customer Service Market: Region Footprint
- Table 8 Ai For Customer Service Market: Product Type Footprint
- Table 9 Ai For Customer Service Market:
- Customer Interaction Channel Footprint
- Table 10 Ai For Customer Service Market: End User Footprint
- Table 11 Ai For Customer Service Market: Detailed List Of Key Startups/Smes
- Table 12 Ai For Customer Service Market:
- Competitive Benchmarking Of Startups/Smes
- Table 13 Ai For Customer Service Market:
- Product Launches & Enhancements, January 2021–january 2025
- Table 14 Ai For Customer Service Market: Deals, January 2021–january 2025
- Table 15 Microsoft: Company Overview
- Table 16 Microsoft: Products/Solutions/Services Offered
- Table 17 Microsoft: Product Launches And Enhancements
- Table 18 Microsoft: Deals
- Table 19 Ibm: Company Overview
- Table 20 Ibm: Products/Solutions/Services Offered
- Table 21 Ibm: Product Launches And Enhancements
- Table 22 Ibm: Deals
- Table 23 Google: Company Overview
- Table 24 Google: Products/Solutions/Services Offered
- Table 25 Google: Product Launches And Enhancements
- Table 26 Google: Deals
- Table 27 Aws: Company Overview
- Table 28 Aws: Products/Solutions/Services Offered
- Table 29 Aws: Product Launches And Enhancements
- Table 30 Aws: Deals
- Table 31 Salesforce: Company Overview
- Table 32 Salesforce: Products/Solutions/Services Offered
- Table 33 Salesforce: Product Launches And Enhancements
- Table 34 Atlassian: Company Overview
- Table 35 Atlassian: Products/Solutions/Services Offered
- Table 36 Atlassian: Product Launches And Enhancements
- Table 37 Servicenow: Company Overview
- Table 38 Servicenow: Products/Solutions/Services Offered
- Table 39 Servicenow: Product Launches And Enhancements
- Table 40 Zendesk: Company Overview
- Table 41 Zendesk: Products/Solutions/Services Offered
- Table 42 Zendesk: Product Launches And Enhancements
- Table 43 Zendesk: Deals
- Table 44 Sap: Company Overview
- Table 45 Sap: Products/Solutions/Services Offered
- Table 46 Sap: Deals
- Table 47 Sprinklr: Company Overview
- Table 48 Sprinklr: Products/Solutions/Services Offered
- Table 49 Sprinklr: Deals
- Table 50 Openai: Company Overview
- Table 51 Openai: Products/Solutions/Services Offered
- Table 52 Openai: Product Launches And Enhancements
- Table 53 Openai: Deals
- Table 54 Primary Interviews
- Figures List
- Figure 1 Ai For Customer Service Market: Drivers, Restraints,
- Opportunities, And Challenges
- Figure 2 Evolution Of Ai For Customer Service Market
- Figure 3 Ai For Customer Service Market Ecosystem: Key Players
- Figure 4 Porter’s Five Forces Analysis
- Figure 5 Number Of Patents Granted To Vendors In Last 10 Years
- Figure 6 Regional Analysis Of Patents Granted, 2014–2024
- Figure 7 Trends/Disruptions Impacting Customer Business
- Figure 8 Market Potential Of Generative Ai In Enhancing
- Ai For Customer Service Across Key End Users
- Figure 9 Ai For Customer Service Market: Revenue Analysis Of
- Five Key Players, 2019–2023
- Figure 10 Share Analysis Of Leading Companies In
- Ai For Customer Service Market, 2023
- Figure 11 Product Comparative Analysis, By Product Type
- Figure 12 Company Valuation And Financial Metrics Of Key Vendors
- Figure 13 Year-to-date (Ytd) Price Total Return And
- 5-year Stock Beta Of Key Vendors
- Figure 14 Ai For Customer Service Market:
- Company Evaluation Matrix (Key Players), 2023
- Figure 15 Ai For Customer Service Market: Company Footprint
- Figure 16 Ai For Customer Service Market:
- Company Evaluation Matrix (Startups/Smes), 2023
- Figure 17 Microsoft: Company Snapshot
- Figure 18 Ibm: Company Snapshot
- Figure 19 Google: Company Snapshot
- Figure 20 Aws: Company Snapshot
- Figure 21 Salesforce: Company Snapshot
- Figure 22 Atlassian: Company Snapshot
- Figure 23 Servicenow: Company Snapshot
- Figure 24 Sprinklr: Company Snapshot
- Figure 25 Ai For Customer Service Market: Research Design
Table of Contents
175 Pages
- 1 Introduction
- 1.1 Market Definition
- 1.2 Inclusions & Exclusions
- 1.3 Stakeholders
- 2 Executive Summary
- 3 Market Overview And Industry Trends
- 3.1 Introduction
- 3.2 Market Dynamics
- 3.2.1 Drivers
- 3.2.1.1 Improved Customer Engagement With Omni-channel
- Self-service Options
- 3.2.1.2 Maximizing Agent Efficiency Through Ai Integration
- 3.2.1.3 Enhancing Efficiency And Satisfaction With Intelligent Routing
- 3.2.2 Restraints
- 3.2.2.1 Mitigating Deepfake Threats In Customer Service
- 3.2.3 Opportunities
- 3.2.3.1 Transforming Customer Service With Generative Ai Innovations
- 3.2.3.2 Empowering Proactive Customer Service With Ai Solutions
- 3.2.4 Challenges
- 3.2.4.1 Threats Of Job Displacements In Customer Service
- 3.3 Industry Trends
- 3.3.1 Evolution Of Ai For Customer Service Market
- 3.3.2 Ecosystem Analysis
- 3.3.2.1 Chatbots And Virtual Assistant Providers
- 3.3.2.1.1 Rule-based Chatbots
- 3.3.2.1.2 Conversational Bots
- 3.3.2.1.3 Voice Assistants
- 3.3.2.2 Ai-driven Ticketing System Providers
- 3.3.2.2.1 Automated Ticket Routing
- 3.3.2.2.2 Self-service Portals
- 3.3.2.2.3 Case Resolution Assistant
- 3.3.2.3 Sentiment And Feedback Analysis Tools
- 3.3.2.3.1 Sentiment & Emotion Detection
- 3.3.2.3.2 Customer Feedback
- 3.3.2.3.3 Social Media Monitoring
- 3.3.2.4 Recommendation Systems
- 3.3.2.4.1 Dynamic Faqs
- 3.3.2.4.2 Knowledge Base Platforms
- 3.3.2.5 Visual And Diagnostic Tools
- 3.3.2.5.1 Image Recognition Tools
- 3.3.2.5.2 Voice-based Assistance
- 3.3.2.6 Workflow Automation
- 3.3.2.6.1 Robotic Process Automation
- 3.3.2.6.2 Integrated Crm Automation
- 3.3.2.7 Content Management
- 3.3.2.7.1 Content Distribution
- 3.3.2.7.2 Content Generation
- 3.3.2.7.3 Content Moderation
- 3.3.2.8 Ai Agents
- 3.3.2.8.1 Performance Analytics
- 3.3.2.8.2 Conversation Intelligence
- 3.3.2.9 Customer Interaction Channels
- 3.3.2.9.1 Text And Email
- 3.3.2.9.2 Voice
- 3.3.2.9.3 Video/Visual
- 3.3.2.9.4 Omnichannel
- 3.3.2.10 End Users
- 3.3.3 Technology Analysis
- 3.3.3.1 Key Technologies
- 3.3.3.1.1 Nlp And Deep Learning
- 3.3.3.1.2 Big Data Analytics
- 3.3.3.1.3 Generative Ai
- 3.3.3.1.3.1 Rule-based Models
- 3.3.3.1.3.2 Statistical Models
- 3.3.3.1.3.3 Deep Learning Models
- 3.3.3.1.3.4 Generative Adversarial Networks (Gans)
- 3.3.3.1.3.5 Autoencoders
- 3.3.3.1.3.6 Convolutional Neural Networks (Cnns)
- 3.3.3.1.3.7 Transformer-based Large Language Models (Llms)
- 3.3.3.1.4 Ai Agent Memory
- 3.3.3.1.4.1 Short-term Memory (Stm)
- 3.3.3.1.4.2 Long-term Memory (Ltm) Type 1
- 3.3.3.1.4.3 Long-term Memory (Ltm) Type 2
- 3.3.3.1.4.4 Long-term Memory (Ltm) Type 3
- 3.3.3.1.5 Robotic Process Automation (Rpa)
- 3.3.3.2 Adjacent Technologies
- 3.3.3.2.1 Cloud Computing
- 3.3.3.2.2 Edge Computing
- 3.3.3.2.3 Internet Of Things
- 3.3.3.2.4 5g And Advanced Connectivity
- 3.3.3.3 Complementary Technologies
- 3.3.3.3.1 Cybersecurity
- 3.3.3.3.2 Augmented Reality (Ar) And Virtual Reality (Vr)
- 3.3.3.3.3 Blockchain
- 3.3.4 Porter’s Five Forces Analysis
- 3.3.4.1 Threat Of New Entrants
- 3.3.4.2 Threat Of Substitutes
- 3.3.4.3 Bargaining Power Of Suppliers
- 3.3.4.4 Bargaining Power Of Buyers
- 3.3.4.5 Intensity Of Competitive Rivalry
- 3.3.5 Key Conferences And Events (2025–2026)
- 3.3.6 Patent Analysis
- 3.3.6.1 Methodology
- 3.3.6.2 Patents Filed, By Document Type
- 3.3.6.3 Innovations And Patent Applications
- 3.3.7 Trends/Disruptions Impacting Customer Business
- 3.3.8 Impact Of Generative Ai On Ai For Customer Service Market
- 3.3.8.1 Top Use Cases & Market Potential
- 3.3.8.2 Key Use Cases
- 3.3.8.2.1 Enhanced Efficiency And Productivity
- 3.3.8.2.2 24/7 Availability
- 3.3.8.2.3 Personalized Customer Interactions
- 3.3.8.2.4 Cost Reduction
- 3.3.8.2.5 Proactive Customer Engagement
- 3.3.8.2.6 Scalability
- 4 Competitive Landscape
- 4.1 Overview
- 4.2 Key Player Strategies/Right To Win, 2020–2024
- 4.3 Revenue Analysis, 2019–2023
- 4.4 Market Share Analysis, 2023
- 4.4.1 Market Share Analysis Of Key Players
- 4.4.2 Market Ranking Analysis
- 4.5 Product Comparative Analysis, By Product Type
- 4.5.1 Product Comparative Analysis, By Chatbots And Virtual Assistants
- 4.5.1.1 Google Dialogflow
- 4.5.1.2 Ibm Watson Assistant
- 4.5.1.3 Xo Automation (Kore.Ai)
- 4.5.2 Product Comparative Analysis, By Ai-driven Ticketing Systems
- 4.5.2.1 Freedy Ai (Freshdesk)
- 4.5.2.2 Ai Bot (Zendesk)
- 4.5.2.3 Zia Ai (Zoho)
- 4.5.3 Product Comparative Analysis, By Recommendation Systems
- 4.5.3.1 Amazon Personalize (Aws)
- 4.5.3.2 Product Recommendation Engines (Salesforce)
- 4.5.3.3 Dynamic Yield
- 4.6 Company Valuation And Financial Metrics Of Key Vendors
- 4.7 Company Evaluation Matrix: Key Players, 2023
- 4.7.1 Stars
- 4.7.2 Emerging Leaders
- 4.7.3 Pervasive Players
- 4.7.4 Participants
- 4.7.5 Company Footprint: Key Players
- 4.7.5.1 Company Footprint
- 4.7.5.2 Region Footprint
- 4.7.5.3 Product Type Footprint
- 4.7.5.4 Customer Interaction Channel Footprint
- 4.7.5.5 End User Footprint
- 4.8 Company Evaluation Matrix: Startups/Smes, 2023
- 4.8.1 Progressive Companies
- 4.8.2 Responsive Companies
- 4.8.3 Dynamic Companies
- 4.8.4 Starting Blocks
- 4.8.5 Competitive Benchmarking: Startups/Smes, 2023
- 4.8.5.1 Detailed List Of Key Startups/Smes
- 4.8.5.2 Competitive Benchmarking Of Key Startups/Smes
- 4.9 Competitive Scenario
- 4.9.1 Product Launches & Enhancements
- 4.9.2 Deals
- 5 Company Profiles
- 5.1 Introduction
- 5.2 Key Players
- 5.2.1 Microsoft
- 5.2.1.1 Business Overview
- 5.2.1.2 Products/Solutions/Services Offered
- 5.2.1.3 Recent Developments
- 5.2.1.3.1 Product Launches And Enhancements
- 5.2.1.3.2 Deals
- 5.2.1.4 Mnm View
- 5.2.1.4.1 Key Strengths
- 5.2.1.4.2 Strategic Choices
- 5.2.1.4.3 Weaknesses And Competitive Threats
- 5.2.2 Ibm
- 5.2.2.1 Business Overview
- 5.2.2.2 Products/Solutions/Services Offered
- 5.2.2.3 Recent Developments
- 5.2.2.3.1 Product Launches And Enhancements
- 5.2.2.3.2 Deals
- 5.2.2.4 Mnm View
- 5.2.2.4.1 Key Strengths
- 5.2.2.4.2 Strategic Choices
- 5.2.2.4.3 Weaknesses And Competitive Threats
- 5.2.3 Google
- 5.2.3.1 Business Overview
- 5.2.3.2 Products/Solutions/Services Offered
- 5.2.3.3 Recent Developments
- 5.2.3.3.1 Product Launches And Enhancements
- 5.2.3.3.2 Deals
- 5.2.3.4 Mnm View
- 5.2.3.4.1 Key Strengths
- 5.2.3.4.2 Strategic Choices
- 5.2.3.4.3 Weaknesses And Competitive Threats
- 5.2.4 Aws
- 5.2.4.1 Business Overview
- 5.2.4.2 Products/Solutions/Services Offered
- 5.2.4.3 Recent Developments
- 5.2.4.3.1 Product Launches And Enhancements
- 5.2.4.3.2 Deals
- 5.2.4.4 Mnm View
- 5.2.4.4.1 Key Strengths
- 5.2.4.4.2 Strategic Choices
- 5.2.4.4.3 Weaknesses And Competitive Threats
- 5.2.5 Salesforce
- 5.2.5.1 Business Overview
- 5.2.5.2 Products/Solutions/Services Offered
- 5.2.5.3 Recent Developments
- 5.2.5.3.1 Product Launches And Enhancements
- 5.2.5.4 Mnm View
- 5.2.5.4.1 Key Strengths
- 5.2.5.4.2 Strategic Choices
- 5.2.5.4.3 Weaknesses And Competitive Threats
- 5.2.6 Atlassian
- 5.2.6.1 Business Overview
- 5.2.6.2 Products/Solutions/Services Offered
- 5.2.6.3 Recent Developments
- 5.2.6.3.1 Product Launches And Enhancements
- 5.2.7 Servicenow
- 5.2.7.1 Business Overview
- 5.2.7.2 Products/Solutions/Services Offered
- 5.2.7.3 Recent Developments
- 5.2.7.3.1 Product Launches And Enhancements
- 5.2.8 Zendesk
- 5.2.8.1 Business Overview
- 5.2.8.2 Products/Solutions/Services Offered
- 5.2.8.3 Recent Developments
- 5.2.8.3.1 Product Launches And Enhancements
- 5.2.8.3.2 Deals
- 5.2.9 Sap
- 5.2.9.1 Business Overview
- 5.2.9.2 Products/Solutions/Services Offered
- 5.2.9.3 Recent Developments
- 5.2.9.3.1 Deals
- 5.2.10 Sprinklr
- 5.2.10.1 Business Overview
- 5.2.10.2 Products/Solutions/Services Offered
- 5.2.10.3 Recent Developments
- 5.2.10.3.1 Deals
- 5.2.11 Openai
- 5.2.11.1 Business Overview
- 5.2.11.2 Products/Solutions/Services Offered
- 5.2.11.3 Recent Developments
- 5.2.11.3.1 Product Launches And Enhancements
- 5.2.11.3.2 Deals
- 5.2.12 Aisera
- 5.2.13 Uipath
- 5.2.14 Hubspot
- 5.2.15 Nice
- 5.2.16 Intercom
- 5.2.17 Qualtrics
- 5.2.18 Freshworks
- 5.2.19 Liveperson
- 5.2.20 Helpshift
- 5.2.21 Yellow.Ai
- 5.2.22 Cogito
- 5.2.23 Smartaction
- 5.2.24 Talkdesk
- 5.2.25 Five9
- 5.2.26 Ringcentral
- 5.2.27 Nextiva
- 5.2.28 Kore.Ai
- 5.2.29 Dynamic Yield
- 5.2.30 Jiohaptik
- 5.2.31 Oracle
- 5.2.32 Afiniti
- 5.3 Startups/Smes
- 5.3.1 Kommunicate
- 5.3.2 Help Scout
- 5.3.3 Gorgias
- 5.3.4 Atera
- 5.3.5 Ada
- 5.3.6 Kustomer
- 5.3.7 Levity
- 5.3.8 Cognigy
- 5.3.9 Engageware
- 5.3.10 Netomi
- 5.3.11 Levelai
- 5.3.12 Sybill Ai
- 5.3.13 One Ai
- 5.3.14 Brainfish
- 5.3.15 Sentisum
- 5.3.16 Balto
- 5.3.17 Tovie Ai
- 5.3.18 Guru
- 5.3.19 Tidio
- 5.3.20 Quiq
- 5.3.21 Aircall
- 5.3.22 Onereach.Ai
- 5.3.23 Cresta
- 5.3.24 Deepdesk
- 5.3.25 Front
- 5.3.26 Fullview
- 5.3.27 Crescendo Ai
- 5.3.28 Gridspace
- 6 Appendix
- 6.1 Research Methodology
- 6.1.1 Research Data
- 6.1.1.1 Secondary Data
- 6.1.1.2 Primary Data
- 6.1.2 Research Limitations
- 6.2 Company Evaluation Matrix: Methodology
- 6.3 Author Details
Search Inside Report
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.