Report cover image

Global AI in Energy Market Size, Trend & Opportunity Analysis Report, by Type (Solutions, Services), Application (Robotics, Renewable Energy Management, Demand Forecasting, Safety Security & Infrastructure), and Forecast, 2025–2035

Published Jan 15, 2026
Length 285 Pages
SKU # KAIS20789894

Description

Market Definition and Introduction
The global AI in energy market, valued at USD 11.30 billion in 2024, is projected to grow to USD 205.97 billion by 2035, with a CAGR of 30.2% during the forecast period from 2025 to 2035. Artificial intelligence has become one of the most important enabling technologies to enhance generation asset optimisation, demand forecasting, and maintenance automation, as energy producers and grid operators must coexist with the competing imperatives of decarbonization and reliability. By embedding algorithms such as machine learning and deep learning into SCADA systems, utilities can optimise the management of complex resource mixes--solar, wind, hydropower, and conventional--while minimising curtailment and maximising asset usefulness throughout shifting market scenarios.
Projects comprise an AI analytics platform that technology vendors and energy companies increasingly offer bundled with consulting services to provide a one-stop solution for data ingestion, model building, cybersecurity processes, and compliance on the regulatory side. Computer-vision-and-edge-AI-based robotics are being used for predictive maintenance on turbines and substations, supported by cloud frameworks harnessing extensive historical datasets to mould long-term investment decisions. From residential through commercial to industrial applications, stakeholders are piloting AI-based microgrids, virtual power plants, and peer-to-peer energy-trading approaches that set untold changes toward the decentralised intelligent energy ecosystem into motion.
World is making a net-zero transition, ESG metrics are built into AI models for quantifying carbon abatement, prioritising zero-carbon dispatch, and optimising battery storage cycles. Further, in support of the AI adoption, increasing capital flows from green bonds and sustainability-linked loans, while governments incentivise R&D in AI-for-Energy via grants and tax credits. Under this ongoing change, the AI in the energy market is rapidly moving from proof-of-concept pilots to enterprise-wide deployment with the potential to overhaul how energy is generated, transmitted, and consumed on an industrial scale worldwide.

Recent Developments in the Industry

In April 2025, Siemens Energy launched the Synergy AI Platform, integrating digital twin capabilities and reinforcement learning to optimise combined-cycle gas turbine efficiency in real time across multiple power plants.
In December 2024, ABB introduced its Ability™ Geni AI suite for Energy, combining cloud-based machine learning services with on-premise edge modules to deliver unified asset health monitoring and demand-forecasting tools for utilities.
In August 2024, Schneider Electric partnered with IBM to roll out AI-driven grid stabilisation services, leveraging IBM Watson’s deep learning models to predict voltage fluctuations and automate reactive power compensation in distribution networks.

Market Dynamics

Rapid integration of predictive analytics and machine-learning algorithms optimises output generation and asset performance.
Energy producers are implementing artificial intelligence models that constantly ingest sensor telemetry (including vibration, temperature, and acoustic signatures) to forecast equipment deterioration weeks in advance. These predictive maintenance frameworks based on convolutional neural networks and gradient-boosting trees help reduce unplanned outages, improve turbine lifespan, and decrease operational expenditures through scheduling repairs and parts replacements per condition.
Scaling AI-enabled Demand Forecasting Platforms to Balance Load Growth with Renewables under an Erratic Market Environment
Utilities and independent system operators increasingly rely on deep learning best-engineered demand forecasting engines, which synthesise weather projections, historical consumption patterns, and socio-economic indicators to yield half-hourly load estimates remarkably close to the actual figures. Grid operators couple these forecasts with their automated generation scheduling to integrate renewables better, lower reliance on gas Peaker plants, and stabilise wholesale electricity prices.
Robotic Deployment and Computer Vision Systems for Autonomous Inspection and Maintenance at Energy Infrastructure
Autonomous inspection for wind turbine blades, transmission towers, and solar farms is done by AI-operated drones and ground rovers outfitted with high-resolution cameras and LiDAR sensors. Advanced computer vision algorithms are employed in the systems for the automatic detection of cracks, corrosion, and alignment issues, which have significantly reduced the inspection cycles from weeks to days and much minimised the safety risks associated with manual inspection.
Further Expanding AI Services for Safety, Security & Infrastructure
With rising cyber threats against energy grids, AI-based security monitoring programs are being introduced to detect anomalies in network traffic and activate automated incident-response workflows. AI-based physical security solutions are used to improve perimeter security at critical substations and control centres, thus mitigating risks from both digital and physical intrusions by enabling facial recognition and behaviour-analysis models.

Attractive Opportunities in the Market

AI-Driven Virtual Power Plant Orchestration – Aggregating distributed energy resources through machine learning–enabled dispatch algorithms.
Predictive Cybersecurity for Operational Technology – AI services that pre-empt network intrusions and unauthorised control commands.
Edge AI for Microgrid Autonomy – On-site inference modules optimising islanded network operations without cloud dependence.
Robotics as a Service for Asset Inspection – Subscription-based autonomous inspection offerings reducing Capex and OpenX.
Renewable Energy Management Solutions – AI platforms harmonising solar and wind output to maximise firm capacity contributions.
Real-Time Demand Response Optimisation – Deep-learning models coordinating consumer-side flexibility across residential and commercial loads.
AI-Enabled Energy Trading Analytics – High-frequency predictive models for spot-market arbitrage and PPA negotiation insights.
Safety Analytics for High-Voltage Equipment – Computer vision–based detection of dielectric degradation and fault precursors.

Report Segmentation

By Type: Solutions, Services
By Application: Robotics, Renewable Energy Management, Demand Forecasting, Safety, Security & Infrastructure
By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)
Key Market Players: Siemens Energy, ABB, Schneider Electric, IBM, General Electric, Microsoft, AWS, Uptake Technologies, C3.ai, Hitachi Energy.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025–2035
Report Pages: 293

Dominating Segments

AI-driven end-to-end solutions that integrate advanced analytics, digital twins, and edge computing offer tremendous potential for energy optimisation in scalable dimensions.
Organisations are adopting AI solutions in which the digital twin simulation is combined with machine learning-powered optimisation engines to manage in real time the generation scheduling, storage dispatch, and network reconfiguration. Essentially, these platforms offer unified dashboards for asset health and financial performance, together with carbon accounting, enabling energy companies to conduct very challenging multi-objective optimisations such as minimising shareholders' carbon emissions while maximising revenue, across a large-scale portfolio of assets and decentralised assets.
Comprehensive Managed Services Provide Data Engineering, Model Governance, and AI Deployment Improvement
These services operate alongside vendor-provided platforms to provide data preprocessing, model training, in-house deployment pipelines, and regulatory reporting. AI service implementation goes through precise initial data maturity assessments, OT environment security assessments performed by Cybersecurity Experts, and measures to enforce model governance, including transparency, explainability, and alignment with regional grid codes and industry standards. Roadmap type full-service view unlocks the slow-paced march toward digital transformation while simultaneously swimming against headwinds charged with common deployment risks like improper data quality or algorithmic bias.

Key Takeaways

Explosive Growth Potential – Projected to expand at a 30.2% CAGR through 2035, driven by decarbonization and digitalisation mandates.
Solution–Service Convergence – Bundled AI platforms and managed services accelerate enterprise adoption.
Robotics Revolution – Autonomous inspection drones and ground robots enhance asset reliability and safety.
Renewables Integration Imperative – AI for solar/wind management mitigates variability and maximises firm capacity.
Advanced Demand Forecasting – Deep-learning models stabilise grids and optimise wholesale market participation.
Cyber-Physical Resilience – AI-driven OT cybersecurity and physical-security solutions fortify critical infrastructure.
Edge AI Momentum – On-device inference ensures low-latency control in microgrids and remote sites.
Energy Trading Analytics – High-frequency modelling unlocks trading arbitrage and PPA optimisation.
Safety and Infrastructure Insights – Computer vision–based diagnostics pre-empt catastrophic failures.
APAC and LAMEA Opportunities – Rapid electrification and grid modernisation spur AI deployments.

Regional Insights

North America's Leading Energy Technology Ecosystem: Fostering AI Solutions and Automating Robotic Deployments.
The rest of North America has already started its adventure into AI in energy because of digital-utility initiatives, big investments in venture capital for clean-tech startups, and early exposure to AI-enabled grid modernisation projects.
Europe's Ambitious Decarbonization Policies and Smart Grid Investments Bear Influence on AI Uptake in Renewable Energy Management.
Europe follows closely, with the EU's Green Deal, and the Next Generation EU fund is catalysing AI-enabled renewable optimisation and demand-response programs.
Asia-Pacific will emerge as the Fastest-growing Region, driven by Rapid Electrification and Digital Utility Modernisation.
Asia-Pacific is expected to present the highest CAGR since China, India, and Australia are investing heavily in smart-grid rollouts, microgrid pilot projects, and digital substations. AI Demand Forecast Services are very much in demand to manage the very volatile consumption patterns in the region and boost renewable integration.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025–2035
Report Pages: 293
Q. What is the expected growth trajectory of AI in the energy market from 2024 to 2035?
The global AI in energy market is projected to grow from USD 11.30 billion in 2024 to USD 205.97 billion by 2035, reflecting a CAGR of 30.2% over the forecast period. This rapid acceleration is driven by mandates to decarbonise, digitalise, and decentralise energy assets.
Q. Which key factors are fuelling the growth of AI in the energy market?

Several key factors are propelling market growth:

Urgent need to integrate high shares of variable renewables.
Deployment of robotics and computer vision for asset inspection.
Adoption of deep-learning–based demand-forecasting platforms.
Growth of AI-driven OT cybersecurity and compliance services.
Expansion of edge AI for microgrid and remote-site autonomy.
Q. What are the primary challenges hindering the growth of AI in the energy market?

Major challenges include:

Data silos and interoperability issues across legacy SCADA systems.
Talent shortages in AI and energy-domain expertise.
Cybersecurity vulnerabilities in digitised infrastructure.
High up-front investment for demonstrator-scale robotics and AI pilots.
Regulatory uncertainty around AI-based operational decision making.
Q. Which regions currently lead the AI in the energy market in terms of market share?
North America leads, driven by advanced smart-grid programs and venture-backed AI startups. Europe follows, propelled by aggressive renewable targets and EU funding. Asia-Pacific is emerging rapidly, with large-scale electrification and digitalisation initiatives.
Q. What emerging opportunities are anticipated in the AI in energy market?

The market is ripe with new opportunities, including:

Comprehensive AI orchestration of virtual power plants.
AI-enabled peer-to-peer energy trading platforms.
Predictive energy-asset life-extension services.
Integrated robotics and AI for rapid disaster-response power restoration.
AI-driven hydrogen-energy management within hybrid grids.

Key Benefits for Stakeholders

The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter’s Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.

Table of Contents

285 Pages
Chapter 1. Market Snapshot
1.1. Market Definition & Report Overview
1.2. Market Segmentation
1.3. Key Takeaways
1.3.1. Top Investment Pockets
1.3.2. Top Winning Strategies
1.3.3. Market Indicators Analysis
1.3.4. Top Impacting Factors
1.4. Application Ecosystem Analysis
1.4.1. 360’ Analysis
Chapter 2. Executive Summary
2.1. CEO/CXO Standpoint
2.2. Strategic Insights
2.3. ESG Analysis
2.4 Market Attractiveness Analysis (top leader’s point of view on market)
2.5.key Findings
Chapter 3. Research Methodology
3.1 Research Objective
3.2 Supply Side Analysis
3.1.1. Primary Research
3.1.2. Secondary Research
3.3 Demand Side Analysis
3.1.3. Primary Research
3.1.4. Secondary Research
3.2. Forecasting Models
3.2.1. Assumptions
3.2.2. Forecasts Parameters
3.3. Competitive breakdown
3.3.1. Market Positioning
3.3.2. Competitive Strength
3.4. Scope of the Study
3.4.1. Research Assumption
3.4.2. Inclusion & Exclusion
3.4.3. Limitations
Chapter 4. Application Landscape
4.1. Market Dynamics
4.1.1. Drivers
4.1.2. Restraints
4.1.3. Opportunities
4.2. Porter’s 5 Forces Model
4.2.1. Bargaining Power of Buyer
4.2.2. Bargaining Power of Supplier
4.2.3. Threat of New Entrants
4.2.4. Threat of Substitutes
4.2.5. Competitive Rivalry
4.3. Value Chain Analysis
4.4. PESTEL Analysis
4.5. Pricing Analysis and Trends
4.6. Key growth factors and trends analysis
4.7. Market Share Analysis (2025)
4.8. Top Winning Strategies (2025)
4.9. Trade Data Analysis (Import Export)
4.10. Regulatory Guidelines
4.11. Historical Data Analysis
4.12. Analyst Recommendation & Conclusion
Chapter 5. Global AI in Energy Market Size & Forecasts by Type 2025-2035
5.1. Market Overview
5.1.1. Market Size and Forecast By Type 2025-2035
5.2. Solutions
5.2.1. Market definition, current market trends, growth factors, and opportunities
5.2.2. Market size analysis, by region, 2025-2035
5.2.3. Market share analysis, by country, 2025-2035
5.3. Services
5.3.1. Market definition, current market trends, growth factors, and opportunities
5.3.2. Market size analysis, by region, 2025-2035
5.3.3. Market share analysis, by country, 2025-2035
Chapter 6. Global AI in Energy Market Size & Forecasts by Application 2025–2035
6.1. Market Overview
6.1.1. Market Size and Forecast By Application 2025-2035
6.2. Robotics
6.2.1. Market definition, current market trends, growth factors, and opportunities
6.2.2. Market size analysis, by region, 2025-2035
6.2.3. Market share analysis, by country, 2025-2035
6.3. Renewable Energy Management
6.3.1. Market definition, current market trends, growth factors, and opportunities
6.3.2. Market size analysis, by region, 2025-2035
6.3.3. Market share analysis, by country, 2025-2035
6.4. Demand Forecasting
6.4.1. Market definition, current market trends, growth factors, and opportunities
6.4.2. Market size analysis, by region, 2025-2035
6.4.3. Market share analysis, by country, 2025-2035
6.5. Safety Security & Infrastructure
6.5.1. Market definition, current market trends, growth factors, and opportunities
6.5.2. Market size analysis, by region, 2025-2035
6.5.3. Market share analysis, by country, 2025-2035
Chapter 7. Global AI in Energy Market Size & Forecasts by Region 2025–2035
7.1. Regional Overview 2025-2035
7.2. Top Leading and Emerging Nations
7.3. North America AI in Energy Market
7.3.1. U.S. AI in Energy Market
7.3.1.1. Type breakdown size & forecasts, 2025-2035
7.3.1.2. Application breakdown size & forecasts, 2025-2035
7.3.2. Canada AI in Energy Market
7.3.2.1. Type breakdown size & forecasts, 2025-2035
7.3.2.2. Application breakdown size & forecasts, 2025-2035
7.3.3. Mexico AI in Energy Market
7.3.3.1. Type breakdown size & forecasts, 2025-2035
7.3.3.2. Application breakdown size & forecasts, 2025-2035
7.4. Europe AI in Energy Market
7.4.1. UK AI in Energy Market
7.4.1.1. Type breakdown size & forecasts, 2025-2035
7.4.1.2. Application breakdown size & forecasts, 2025-2035
7.4.2. Germany AI in Energy Market
7.4.2.1. Type breakdown size & forecasts, 2025-2035
7.4.2.2. Application breakdown size & forecasts, 2025-2035
7.4.3. France AI in Energy Market
7.4.3.1. Type breakdown size & forecasts, 2025-2035
7.4.3.2. Application breakdown size & forecasts, 2025-2035
7.4.4. Spain AI in Energy Market
7.4.4.1. Type breakdown size & forecasts, 2025-2035
7.4.4.2. Application breakdown size & forecasts, 2025-2035
7.4.5. Italy AI in Energy Market
7.4.5.1. Type breakdown size & forecasts, 2025-2035
7.4.5.2. Application breakdown size & forecasts, 2025-2035
7.4.6. Rest of Europe AI in Energy Market
7.4.6.1. Type breakdown size & forecasts, 2025-2035
7.4.6.2. Application breakdown size & forecasts, 2025-2035
7.5. Asia Pacific AI in Energy Market
7.5.1. China AI in Energy Market
7.5.1.1. Type breakdown size & forecasts, 2025-2035
7.5.1.2. Application breakdown size & forecasts, 2025-2035
7.5.2. India AI in Energy Market
7.5.2.1. Type breakdown size & forecasts, 2025-2035
7.5.2.2. Application breakdown size & forecasts, 2025-2035
7.5.3. Japan AI in Energy Market
7.5.3.1. Type breakdown size & forecasts, 2025-2035
7.5.3.2. Application breakdown size & forecasts, 2025-2035
7.5.4. Australia AI in Energy Market
7.5.4.1. Type breakdown size & forecasts, 2025-2035
7.5.4.2. Application breakdown size & forecasts, 2025-2035
7.5.5. South Korea AI in Energy Market
7.5.5.1. Type breakdown size & forecasts, 2025-2035
7.5.5.2. Application breakdown size & forecasts, 2025-2035
7.5.6. Rest of APAC AI in Energy Market
7.5.6.1. Type breakdown size & forecasts, 2025-2035
7.5.6.2. Application breakdown size & forecasts, 2025-2035
7.6. LAMEA AI in Energy Market
7.6.1. Brazil AI in Energy Market
7.6.1.1. Type breakdown size & forecasts, 2025-2035
7.6.1.2. Application breakdown size & forecasts, 2025-2035
7.6.2. Argentina AI in Energy Market
7.6.2.1. Type breakdown size & forecasts, 2025-2035
7.6.2.2. Application breakdown size & forecasts, 2025-2035
7.6.3. UAE AI in Energy Market
7.6.3.1. Type breakdown size & forecasts, 2025-2035
7.6.3.2. Application breakdown size & forecasts, 2025-2035
7.6.4. Saudi Arabia (KSA AI in Energy Market
7.6.4.1. Type breakdown size & forecasts, 2025-2035
7.6.4.2. Application breakdown size & forecasts, 2025-2035
7.6.5. Africa AI in Energy Market
7.6.5.1. Type breakdown size & forecasts, 2025-2035
7.6.5.2. Application breakdown size & forecasts, 2025-2035
7.6.6. Rest of LAMEA AI in Energy Market
7.6.6.1. Type breakdown size & forecasts, 2025-2035
7.6.6.2. Application breakdown size & forecasts, 2025-2035
Chapter 8. Company Profiles
8.1. Top Market Strategies
8.2. Company Profiles
8.2.1. Siemens Energy
8.2.1.1. Company Overview
8.2.1.2. Key Executives
8.2.1.3. Company Snapshot
8.2.1.4. Financial Performance (Subject to Data Availability)
8.2.1.5. Product/Services Port
8.2.1.6. Recent Development
8.2.1.7. Market Strategies
8.2.1.8. SWOT Analysis
8.2.2. ABB
8.2.3. Schneider Electric
8.2.4. IBM
8.2.5. General Electric
8.2.6. Microsoft
8.2.7. AWS
8.2.8. Uptake Technologies
8.2.9. C3.ai
8.2.10. Hitachi Energy
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.