China Automotive Multimodal Interaction Development Research Report, 2025
Description
Research on Automotive Multimodal Interaction: The Interaction Evolution of L1~L4 Cockpits
ResearchInChina has released the China Automotive Multimodal Interaction Development Research Report, 2025. This report comprehensively sorts out the installation of Interaction Modalities in automotive cockpits, multimodal interaction patents, mainstream cockpit interaction modes, application of interaction modes in key vehicle models launched in 2025, cockpit interaction solutions of automakers/suppliers, and integration trends of multimodal interaction.
I. Closed-Loop Evolution of Multimodal Interaction: Progressive Evolution of L1~L4 Intelligent Cockpits
According to the White Paper on Automotive Intelligent Cockpit Levels and Comprehensive Evaluation jointly released by the China Society of Automotive Engineers (China-SAE), five levels of intelligent cockpits are defined: L0-L4.
As a key driver for cockpit intelligence, multimodal interaction capability relies on the collaboration of AI large models and multiple hardware to achieve the fusion processing of multi-source interaction data. On this basis, it accurately understands the intentions of drivers and passengers and provides scenario-based feedback, ultimately achieving natural, safe, and personalized human-machine interaction. Currently, the automotive intelligent cockpit industry is generally in the L2 stage, with some leading manufacturers exploring and moving towards the L3.
The core feature of L2 intelligent cockpits is strong perception, weak cognition. In the L2 stage, the multimodal interaction function of cockpits achieves signal-level fusion. Based on multimodal large model technology, it can understand users' ambiguous intentions and simultaneously process multiple commands to execute users' immediate and explicit commands. At present, most mass-produced intelligent cockpits can enable this.
In the case of Li i6, it is equipped with MindGPT-4o, the latest multimodal model which boasts understanding and response capabilities with ultra-long memory and ultra-low latency, and features more natural language generation. It supports multimodal see and speak (voice + vision fusion search: allowing illiterate children to select the cartoons they want to watch by describing the content on the video cover); multimodal referential interaction (voice + gesture: ① Voice reference to objects: while issuing commands, extend the index finger: pointing left can control the window and complete vehicle control. ② Voice reference to personnel: passengers in the same row can achieve voice control over designated personnel through gesture and voice coordination, e.g., pointing right and saying Turn on the seat heating for him).
The core feature of L3 intelligent cockpits is strong perception, strong cognition. In the L3 stage, the multimodal interaction function of cockpits achieves cognitive-level fusion. Relying on large model capabilities, the cockpit system can comprehensively understand the complete current scenario and actively initiate reasonable services or suggestions without the user issuing explicit commands.
The core feature of L4 intelligent cockpits is full-domain cognition and autonomous evolution, creating a full-domain intelligent manager for users. In the L4 stage, the application of intelligent cockpits will go far beyond the tool attribute and become a digital twin partner that can predict users' unspoken needs, have shared memories, and dispatch all resources for users. Its core experience is: before the user clearly perceives or expresses the need, the system has completed prediction and planning and entered the execution state.
II. Multimodal AI Agent: Understand What You Need and Predict What You Think
AI Agent can be regarded as the core execution unit and key technical architecture for the specific implementation of functions in the evolution of intelligent cockpits from L2 to L4. By integrating voice, vision, touch and situational information, AI Agent can not only understand commands, but also see the environment and perceive the state, thereby integrating the original discrete cockpit functions into a coherent, active and personalized service process.
Agent applications under L2 can be regarded as enhanced command execution, which is the ultimate extension of L2 cockpit interaction capabilities. Based on large model technology, the cockpit system decomposes a user's complex command into multiple steps and then calls different Agent tools to execute them. For example, a passenger says: I'm tired, help me buy a cup of coffee. The large model of the L2 cockpit system will understand this complex command and then call in sequence:
1.Voice Agent: Parse user needs in real time;
2.Food Ordering Agent: Recommend the best options according to user preferences, real-time location, and restaurant business status;
3.Payment Agent: Automatically complete unconscious payment;
4.Delivery Agent: Dynamically plan the food delivery time combined with vehicle navigation data (e.g., food arrives when the car arrives, ensuring that the food is delivered synchronously when the user reaches the destination).
Currently, Agent applications are essentially responses and executions to a user's explicit and complex commands. The cockpit system does not do anything actively, and it just completes the tasks assigned by the user more intelligently.
Case (1): IM Motors released the IM AIOS Ecological Cockpit jointly developed with Banma Zhixing. This cockpit is the first to implement Alibaba's ecosystem services in the form of AI Agent, creating a No Touch & No App human-vehicle interaction mode. The AI Food Ordering Agent and AI Ticketing Agent functions launched by the IM AIOS Ecological Cockpit allow users to complete food selection/ticketing and payment only through voice interaction without needing manual operation.
Case (2): On August 4, 2025, Denza officially launched the Car Life Agent intelligent service system at its brand press conference, which is first equipped on two flagship models, Denza Z9 and Z9GT. The Car Life Agent supports voice food ordering and enables payment by face with face recognition technology. After completing the order, the system will automatically plan the navigation route, forming a seamless experience of demand-service-closed loop.
In the next level of intelligent cockpits, Agent applications will change from you say, I do to I watch, I guess, I suggest, let's do it together. Users do not need to issue any explicit commands. They just sigh and rub their temples, and the system can comprehensively judge data from camera (tired micro-expressions), biological sensors (heart rate changes), navigation data (continuous driving for 2 hours), and time (3 pm (afternoon sleepiness period)) via the large model to know that the user is in the tired period of long-distance driving and has the need to rest and refresh. Based on this, the system will take the initiative to initiate interaction: You seem to need a rest. There is a service zone* kilometers ahead with your favorite ** coffee. Do you need me to turn on the navigation? At the same time, I can play refreshing music for you. After the user agrees, the system then calls navigation, entertainment and other Agent tools.
Please Note: PDF E-mail from Publisher purchase option allows up to 10 users and does not allow printing or editing. This functionality will require a Global Site License.
ResearchInChina has released the China Automotive Multimodal Interaction Development Research Report, 2025. This report comprehensively sorts out the installation of Interaction Modalities in automotive cockpits, multimodal interaction patents, mainstream cockpit interaction modes, application of interaction modes in key vehicle models launched in 2025, cockpit interaction solutions of automakers/suppliers, and integration trends of multimodal interaction.
I. Closed-Loop Evolution of Multimodal Interaction: Progressive Evolution of L1~L4 Intelligent Cockpits
According to the White Paper on Automotive Intelligent Cockpit Levels and Comprehensive Evaluation jointly released by the China Society of Automotive Engineers (China-SAE), five levels of intelligent cockpits are defined: L0-L4.
As a key driver for cockpit intelligence, multimodal interaction capability relies on the collaboration of AI large models and multiple hardware to achieve the fusion processing of multi-source interaction data. On this basis, it accurately understands the intentions of drivers and passengers and provides scenario-based feedback, ultimately achieving natural, safe, and personalized human-machine interaction. Currently, the automotive intelligent cockpit industry is generally in the L2 stage, with some leading manufacturers exploring and moving towards the L3.
The core feature of L2 intelligent cockpits is strong perception, weak cognition. In the L2 stage, the multimodal interaction function of cockpits achieves signal-level fusion. Based on multimodal large model technology, it can understand users' ambiguous intentions and simultaneously process multiple commands to execute users' immediate and explicit commands. At present, most mass-produced intelligent cockpits can enable this.
In the case of Li i6, it is equipped with MindGPT-4o, the latest multimodal model which boasts understanding and response capabilities with ultra-long memory and ultra-low latency, and features more natural language generation. It supports multimodal see and speak (voice + vision fusion search: allowing illiterate children to select the cartoons they want to watch by describing the content on the video cover); multimodal referential interaction (voice + gesture: ① Voice reference to objects: while issuing commands, extend the index finger: pointing left can control the window and complete vehicle control. ② Voice reference to personnel: passengers in the same row can achieve voice control over designated personnel through gesture and voice coordination, e.g., pointing right and saying Turn on the seat heating for him).
The core feature of L3 intelligent cockpits is strong perception, strong cognition. In the L3 stage, the multimodal interaction function of cockpits achieves cognitive-level fusion. Relying on large model capabilities, the cockpit system can comprehensively understand the complete current scenario and actively initiate reasonable services or suggestions without the user issuing explicit commands.
The core feature of L4 intelligent cockpits is full-domain cognition and autonomous evolution, creating a full-domain intelligent manager for users. In the L4 stage, the application of intelligent cockpits will go far beyond the tool attribute and become a digital twin partner that can predict users' unspoken needs, have shared memories, and dispatch all resources for users. Its core experience is: before the user clearly perceives or expresses the need, the system has completed prediction and planning and entered the execution state.
II. Multimodal AI Agent: Understand What You Need and Predict What You Think
AI Agent can be regarded as the core execution unit and key technical architecture for the specific implementation of functions in the evolution of intelligent cockpits from L2 to L4. By integrating voice, vision, touch and situational information, AI Agent can not only understand commands, but also see the environment and perceive the state, thereby integrating the original discrete cockpit functions into a coherent, active and personalized service process.
Agent applications under L2 can be regarded as enhanced command execution, which is the ultimate extension of L2 cockpit interaction capabilities. Based on large model technology, the cockpit system decomposes a user's complex command into multiple steps and then calls different Agent tools to execute them. For example, a passenger says: I'm tired, help me buy a cup of coffee. The large model of the L2 cockpit system will understand this complex command and then call in sequence:
1.Voice Agent: Parse user needs in real time;
2.Food Ordering Agent: Recommend the best options according to user preferences, real-time location, and restaurant business status;
3.Payment Agent: Automatically complete unconscious payment;
4.Delivery Agent: Dynamically plan the food delivery time combined with vehicle navigation data (e.g., food arrives when the car arrives, ensuring that the food is delivered synchronously when the user reaches the destination).
Currently, Agent applications are essentially responses and executions to a user's explicit and complex commands. The cockpit system does not do anything actively, and it just completes the tasks assigned by the user more intelligently.
Case (1): IM Motors released the IM AIOS Ecological Cockpit jointly developed with Banma Zhixing. This cockpit is the first to implement Alibaba's ecosystem services in the form of AI Agent, creating a No Touch & No App human-vehicle interaction mode. The AI Food Ordering Agent and AI Ticketing Agent functions launched by the IM AIOS Ecological Cockpit allow users to complete food selection/ticketing and payment only through voice interaction without needing manual operation.
Case (2): On August 4, 2025, Denza officially launched the Car Life Agent intelligent service system at its brand press conference, which is first equipped on two flagship models, Denza Z9 and Z9GT. The Car Life Agent supports voice food ordering and enables payment by face with face recognition technology. After completing the order, the system will automatically plan the navigation route, forming a seamless experience of demand-service-closed loop.
In the next level of intelligent cockpits, Agent applications will change from you say, I do to I watch, I guess, I suggest, let's do it together. Users do not need to issue any explicit commands. They just sigh and rub their temples, and the system can comprehensively judge data from camera (tired micro-expressions), biological sensors (heart rate changes), navigation data (continuous driving for 2 hours), and time (3 pm (afternoon sleepiness period)) via the large model to know that the user is in the tired period of long-distance driving and has the need to rest and refresh. Based on this, the system will take the initiative to initiate interaction: You seem to need a rest. There is a service zone* kilometers ahead with your favorite ** coffee. Do you need me to turn on the navigation? At the same time, I can play refreshing music for you. After the user agrees, the system then calls navigation, entertainment and other Agent tools.
Please Note: PDF E-mail from Publisher purchase option allows up to 10 users and does not allow printing or editing. This functionality will require a Global Site License.
Table of Contents
285 Pages
- Foreword
- Related Definitions
- 1 Overview of Multimodal Interaction in Automotive Cockpits
- 1.1 Development Stages of Intelligent Cockpits
- 1.2 Definition of Multimodal Interaction
- 1.3 Development System of Multimodal Interaction
- 1.4 Introduction to Core Interaction Modality Technologies (1): Haptic Interaction
- Mainstream Contact Haptic Vibration Feedback Technology
- Core Application Scenarios of Haptic Interaction
- 1.4 Introduction to Core Interaction Modality Technologies (2): Auditory Interaction
- Core Application Scenarios of Voice Interaction
- Voice Interaction - Voiceprint Recognition
- 1.4 Introduction to Core Interaction Modality Technologies (3): Visual Interaction
- Visual Interaction: Face Recognition Technology Roadmap
- Visual Interaction: DMS Technology Roadmap
- Visual Interaction: Gesture Recognition Technology Roadmap
- 1.4 Introduction to Core Interaction Modality Technologies (4): Olfactory Interaction
- 1.5 Application Scenarios of Large Models in Intelligent Cockpits
- 1.6 Vehicle-Human Interaction Functions Based on Multimodal AI Large Models
- 1.7 Industry Chain of Multimodal Interaction
- 1.8 Industry Chain of Multimodal AI Large Models
- 1.9 Policy Environment for Multimodal Interaction
- Summary of Regulations Concerning Network Data Security of Intelligent Connected Vehicles
- Laws and Regulations on Multimodal Interaction (1): Data Security Law
- Laws and Regulations on Multimodal Interaction (2): Several Provisions on the Administration of Automobile Data Security
- Laws and Regulations on Multimodal Interaction (3): Measures for Security Assessment of Data Outbound Transfer
- Latest Mandatory National Standards for Multimodal Interaction
- 1.10 Installation of Interaction Modalities in Cockpits
- Installations & Installation Rate of In-vehicle Voice Recognition, 2025
- Installations & Installation Rate of Vehicle External Voice Interaction, 2025
- Installations & Installation Rate of In-vehicle Gesture Recognition, 2025
- Installations & Installation Rate of Voice + Gesture Fusion Interaction, 2025 Interaction, 2025
- Installations & Installation Rate of In-vehicle Biometric Recognition, 2025
- Installations & Installation Rate of In-vehicle DMS, 2025
- Installations & Installation Rate of In-vehicle OMS, 2025
- 2 Summary of Patents Related to Automotive Multimodal Interaction
- 2.1 Summary of Patents Related to Haptic Interaction
- Cockpit Haptic Interaction Patents
- 2.2 Summary of Patents Related to Auditory Interaction
- Summary of Automotive Voice Interaction Patents (1): Automakers
- Summary of Automotive Voice Interaction Patents (2): Suppliers
- Summary of Automotive Voice Interaction Patents (3): Universities/Research Institutions
- 2.3 Summary of Patents Related to Visual Interaction
- Patents Related to Gesture Recognition
- Patents Related to Emotion Recognition
- Patents Related to In-Cabin Monitoring (1): IMS (In-Cabin monitoring System)
- Patents Related to In-Cabin Monitoring (2): DMS (Driver Monitoring System)
- Patents Related to In-Cabin Monitoring (3): OMS (Occupant Monitoring System)
- In-Cabin Eye Tracking & Payment by Face
- 2.4 Summary of Patents Related to Olfactory Interaction
- Summary of Patents Related to In-vehicle Fragrance System
- 2.5 Summary of Patents Related to Other Featured Interaction Modalities
- Patents Related to Fingerprint Recognition
- Patents Related to Heart Rate Recognition
- Patents Related to Iris Recognition
- Patents Related to Bioelectromyography Recognition
- 3 Multimodal Interaction Cockpit Solutions of OEMs
- 3.1 BYD
- HMI Functions of BYD's Previous-Generation Intelligent Cockpit Systems
- BYD's New-Generation DiLink Intelligent Cockpit
- Featured Multimodal Interaction Applications of BYD DiLink Intelligent Cockpit
- BYD Integrates DeepSeek R1 & Tongyi Series Large Models to Enhance Interaction Capabilities
- BYD Launches Car Life Agent, Supporting Voice Ordering + Payment by Face
- Summary of BYD's Interaction Modality OTA Content in Recent Years
- Summary of Denza's Interaction Modality OTA Content in Recent Years
- Summary of Fangchengbao's Interaction Modality OTA Content in Recent Years
- Summary of Yangwang's Interaction Modality OTA Content in Recent Years
- 3.2 SAIC IM Motors
- HMI Functions of Previous-Generation Intelligent Cockpit Systems
- IM AIOS Cockpit Pioneers A Vehicle-Human Interaction Mode: No Touch & No App
- Core Multimodal Interaction: Voice Interaction
- Summary of Interaction Modality OTA Content in Recent Years
- 3.3 FAW Hongqi
- HMI Functions of Previous-Generation Intelligent Cockpit Systems
- The New Lingshi Cockpit Features Audio-Visual Interaction
- Summary of HMI Functions of Lingshi Cockpit
- 3.4 Geely
- HMI Functions of Geely's Previous-Generation Intelligent Cockpit Systems
- HMI Functions of Lynk & Co's Previous-Generation Intelligent Cockpit Systems
- HMI Functions of Zeekr's Previous-Generation Intelligent Cockpit Systems
- Geely’s AI Intelligent Cockpit Strategy: Fully Entering the AI Era to Achieve One Geely, One Cockpit
- Geely’s AI Intelligent Cockpit Technical Architecture
- Geely's New-Generation AI Cockpit Operating System Flyme Auto 2 Leads Cockpit Interaction into a New Experience of Services Finding Users
- Geely Launches Multimodal Agent Eva to Perceive User Emotions and Provide Proactive Care
- The Intelligent Cockpit System of the Latest Zeekr AI OS 7 Launches AI Eva Agent
- Summary of Geely's Interaction Modality OTA Content in Recent Years
- Summary of Lynk & Co's Interaction Modality OTA Content in Recent Years
- Summary of Zeekr's Interaction Modality OTA Content in Recent Years
- 3.5 Great Wall Motor
- HMI Functions of WEY's Previous-Generation Intelligent Cockpit Systems
- Coffee OS 3 Smart Space System
- Coffee OS 3.1 Upgrades Voice Interaction Functions and Supports the Support Digital Health Applications in IVI Linkage
- Coffee OS 3.3 Continuously Optimizes Voice Interaction Functions
- Summary of WEY's Interaction Modality OTA Content in Recent Years
- Summary of Tank's Interaction Modality OTA Content in Recent Years
- 3.6 Chery
- HMI Functions of Previous-Generation Intelligent Cockpit Systems
- Lion Tech Intelligent Cockpit
- Chery Cooperated with SenseTime to Build the Next-Generation AIOS, Enabling Proactive Services and Emotional Companionship in Intelligent Cockpits
- Summary of Interaction Modality OTA Content in Recent Years
- 3.7 Changan
- HMI Functions of Previous-Generation Intelligent Cockpit Systems
- Tianshu Intelligent Cockpit Enhances Vehicle-Human Interaction and Health Protection Function Experiences
- Summary of Interaction Modality OTA Content in Recent Years
- 3.8 Voyah
- HMI Functions of Previous-Generation Intelligent Cockpit Systems
- Xiaoyao Cockpit 2.0 Upgrades Five-Sense and Intelligent Experiences
- Summary of Multimodal Interaction Capabilities of Xiaoyao Cockpit
- Summary of Interaction Modality OTA Content in Recent Years
- 3.9 Li Auto
- HMI Functions of Previous-Generation Intelligent Cockpit Systems
- Intelligent Cockpit 7.0: Fully Upgrades the Lixiang Tongxue Function Based on Mind GPT
- Intelligent Cockpit 7.4: Upgrades the Lixiang Tongxue Life Assistant Agent to Realize Food Delivery Ordering Function
- Intelligent Cockpit 8.0: Fully Upgrades Lixiang Tongxue to Lixiang Tongxue Agent
- Summary of Interaction Modality OTA Content in Recent Years
- 3.10 NIO
- HMI Functions of Previous-Generation Intelligent Cockpit Systems
- Featured Interaction: NOMI Voice Interaction System
- Summary of Interaction Modality OTA Content in Recent Years
- Summary of ONVO's Interaction Modality OTA Content in Recent Years
- Summary of Firefly’s Interaction Modality OTA Content in Recent Years
- 3.11 Leapmotor
- HMI Functions of Previous-Generation Intelligent Cockpit Systems
- Leapmotor OS 4.0 PLUS Intelligent Cockpit System Equipped with Dual AI Large Voice Models
- Leapmotor Cooperated with Unity China to Create a New HMI Experience for the Next-Generation Intelligent Cockpit
- Summary of Interaction Modality OTA Content in Recent Years
- 3.12 Xpeng
- HMI Functions of Previous-Generation Intelligent Cockpit Systems
- VLM Large Model Defines the Next-Generation Intelligent Cockpit Interaction Experience
- Featured Multimodal Interaction Functions
- Summary of Interaction Modality OTA Content in Recent Years
- 3.13 Xiaomi
- Hyper Intelligent Cockpit
- Super Xiaoai Multimodal Fusion Application
- Xiaomi Adds AI Spatial Interaction Sensors to Achieve Air Gesture Control
- Summary of Interaction Modality OTA Content in Recent Years
- 3.14 BMW
- HMI Functions of Previous-Generation Intelligent Cockpit Systems
- Panoramic iDrive Equipped with Ultra-Sensitive Quality Control Steering Wheel and AI Large Language Model
- Typical Models with In-Vehicle Infotainment Systems: All-New BMW iX3
- 4 Multimodal Cockpit Solutions of Suppliers
- 4.1 Desay SV
- Profile
- Development Strategy
- Multimodal Interaction Solution: Smart Solution 3.0
- Multimodal Interaction Solution: Smart Solution 3.0 Innovative Scenario Applications
- Desay SV and ModelBest Jointly Released On-device Large Model Voice Interaction Solution
- 4.2 Joyson Electronics
- Profile
- Evolution and Definition of JOYNEXT Intelligent Cockpit
- JoySpace+ Immersive Intelligent Cockpit Solution Integrates Multiple Innovative Multimodal Interaction Technologies
- JoySpace+ Immersive Intelligent Cockpit Solution: Sensory Interaction
- JoySpace+ Immersive Intelligent Cockpit Solution: Light and Shadow Space
- JoySpace+ Immersive Intelligent Cockpit Solution: Smart Space
- 4.3 SenseTime
- Profile of SenseTime
- SenseAuto Intelligent Cockpit Product System
- Models-as-a-Service (MaaS) of SenseAuto On-device Multimodal Large Model MAAS
- Open Model Atomic Capabilities of SenseAuto On-device Multimodal Large Model (1): Full-Cabin Scenario Perception
- Open Model Atomic Capabilities of SenseAuto On-device Multimodal Large Model (2): Multimodal Fusion Capabilities
- Open Model Atomic Capabilities of SenseAuto On-device Multimodal Large Model (3): Multi-Image Perception Capabilities
- SenseAuto Multimodal Interaction Application Cases
- 4.4 iFLYTEK
- Profile
- Full-Stack Intelligent Interaction Technology
- Spark Smart Cockpit
- Spark Smart Cockpit 2.0
- Spark Smart Cockpit 2.0: Applications
- Characteristics of Multimodal Perception System: Safety Protection, Personalized Interaction, Multimodal Interaction
- Multimodal Interaction Becomes a Key Direction of iFLYTEK Super Brain 2030 Plan
- 4.5 Thundersoft
- Profile
- AIDV Roadmap
- Device-Edge-Cloud AI Cockpit Solution Creates Full-Link Multimodal Services
- AIBOX+AIOS Integrated Solution Deeply Integrates Multimodal Interaction
- AquaDrive OS 1.0 Evo, Offering Innovative Cockpit Interaction Experience
- 4.6 Huawei
- Profile
- HarmonyOS Evolution History
- HarmonySpace 5 Achieves Immersive Interaction Based on Five-Sense Synergy Technology
- HarmonySpace Reshapes Multimodal Interaction Functions Based on Qianwu Large Model
- Qianwu Interaction Characteristics (1): Enhances Xiaoyi Voice Capabilities + In-vehicle Sensing + Visual Perception Capabilities to Achieve Unconscious Interaction
- Qianwu Interaction Characteristics (2): Supports Millimeter-Level Precise Perception and Full-Cabin Multimodal Human Body Perception
- Featured Interaction Function: Multimodal Monitoring System to Create Driver Incapacitation Assistance Function
- 4.7 Baidu
- Profile
- Apollo Super Cockpit: Building Agents with Full-Sense Fusion, Global Planning and Full-Domain Execution
- Intelligent Cockpit Deeply Integrates End-to-End Cross-Modal AI Voice
- Intelligent Cockpit Deeply Integrates End-to-End Cross-Modal AI Voice: Launches Xiaodu Ideal Agent
- Intelligent Cockpit Deeply Integrates End-to-End Cross-Modal AI Voice: In-vehicle Application Case
- 4.8 Banma Zhixing
- Profile
- Banma Zhixing Released Intelligent Cockpit AI Technology Brand - Yan AI
- Yan AI Released One Rocket, Ten Satellites Interactive Agents
- Banma Zhixing Released Yan AI Hybrid E2E Framework
- Banma Zhixing First Launched Full-Modal On-device Large Model Vehicle-Mounted Solution AutoOmni
- Banma Zhixing Initiated the AI Vehicle-Mounted Platform Service Ecological Alliance with Ecosystem Partners
- 5 Application Cases of Multimodal Interaction Solutions for Typical Vehicle Models
- 5.1 Summary of Application Cases of Multimodal Interaction Solutions for Typical Vehicle Models (1)
- 5.1 Summary of Application Cases of Multimodal Interaction Solutions for Typical Vehicle Models (2)
- 5.1 Summary of Application Cases of Multimodal Interaction Solutions for Typical Vehicle Models (3)
- 5.1 Summary of Application Cases of Multimodal Interaction Solutions for Typical Vehicle Models (4)
- 5.1 Summary of Application Cases of Multimodal Interaction Solutions for Typical Vehicle Models (5)
- 5.2 All-New IM L6: Panoramic Summary of Multimodal Interaction Functions
- 5.2 All-New IM L6: Analysis of Featured Modal Interaction Capabilities
- 5.3 Fangchengbao Bao 8: Panoramic Summary of Multimodal Interaction Functions
- 5.3 Fangchengbao Bao 8: Analysis of Featured Modal Interaction Capabilities
- 5.4 Hongqi Jinkuihua Guoya: Panoramic Summary of Multimodal Interaction Functions
- 5.4 Hongqi Jinkuihua Guoya: Analysis of Featured Modal Interaction Capabilities (1)
- 5.4 Hongqi Jinkuihua Guoya: Analysis of Featured Modal Interaction Capabilities (2)
- 5.4 Hongqi Jinkuihua Guoya: Analysis of Featured Modal Interaction Capabilities (3)
- 5.5 Denza N9: Panoramic Summary of Multimodal Interaction Functions
- 5.5 Denza N9: Analysis of Featured Modal Interaction Capabilities (1)
- 5.5 Denza N9: Analysis of Featured Modal Interaction Capabilities (2)
- 5.6 Zeekr 9X: Panoramic Summary of Multimodal Interaction Functions
- 5.6 Zeekr 9X: Analysis of Featured Modal Interaction Capabilities
- 5.7 Geely Galaxy A7: Panoramic Summary of Multimodal Interaction Functions
- 5.8 Leapmotor B10: Panoramic Summary of Multimodal Interaction Functions
- 5.9 Li i6: Panoramic Summary of Multimodal Interaction Functions
- 5.9 Li i6: Analysis of Featured Modal Interaction Capabilities (1)
- 5.9 Li i6: Analysis of Featured Modal Interaction Capabilities (2)
- 5.10 Xpeng G7: Panoramic Summary of Multimodal Interaction Functions
- 5.10 Xpeng G7: Analysis of Featured Modal Interaction Capabilities
- 5.11 Xiaomi YU7: Panoramic Summary of Multimodal Interaction Functions
- 5.11 Xiaomi YU7: Analysis of Featured Modal Interaction Capabilities
- 5.12 MAEXTRO S800: Panoramic Summary of Multimodal Interaction Functions
- 5.12 MAEXTRO S800: Analysis of Featured Modal Interaction Capabilities (1)
- 5.12 MAEXTRO S800: Analysis of Featured Modal Interaction Capabilities (2)
- 5.12 MAEXTRO S800: Analysis of Featured Modal Interaction Capabilities (3)
- 5.13 2025 AITO M9: Panoramic Summary of Multimodal Interaction Functions
- 5.13 2025 AITO M9: Analysis of Featured Modal Interaction Capabilities (1)
- 5.13 2025 AITO M9: Analysis of Featured Modal Interaction Capabilities (2)
- 5.13 A2025 AITO M9: Analysis of Featured Modal Interaction Capabilities (3)
- 5.13 2025 AITO M9: Analysis of Featured Modal Interaction Capabilities (4)
- 5.14 All-New BMW X3 M50: Panoramic Summary of Multimodal Interaction Functions
- 5.14 All-New BMW X3 M50: Analysis of Featured Modal Interaction Capabilities
- 5.15 2026 Audi E5 Sportback: Panoramic Summary of Multimodal Interaction Functions
- 5.15 2026 Audi E5 Sportback: Analysis of Featured Modal Interaction Capabilities (1)
- 5.15 2026 Audi E5 Sportback: Analysis of Featured Modal Interaction Capabilities (2)
- 5.16 All-New Mercedes-Benz Electric CLA: Panoramic Summary of Multimodal Interaction Functions
- 5.16 All-New Mercedes-Benz Electric CLA: Analysis of Featured Modal Interaction Capabilities
- 6 Summary and Development Trends of Multimodal Interaction
- 6.1 Summary of Large Model Configuration Parameters of OEMs
- 6.2 Trend 1: Evolution of Multimodal Interaction Based on AI Large Models
- Vehicle Scenario Applications Under Multimodal Integration
- Cases
- 6.3 Trend 2
- Cockpit Scenario Application Cases
- Application Cases
- 6.4 Trend 3 (Voice Interaction)
- 6.5 Trend 4 (Visual Interaction)
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.
