Report cover image

NLP in Healthcare & Life Sciences - Company Evaluation Report, 2025

Publisher MarketsandMarkets
Published Aug 01, 2025
Length 153 Pages
SKU # MKMK20314380

Description

The NLP in Healthcare & Life Sciences Companies Quadrant is a comprehensive industry analysis that provides valuable insights into the global market for NLP in Healthcare & Life Sciences. This quadrant offers a detailed evaluation of key market players, technological advancements, product innovations, and emerging trends shaping the industry. MarketsandMarkets 360 Quadrants evaluated over 100 companies, of which the Top 33 NLP in Healthcare & Life Sciences Companies were categorized and recognized as quadrant leaders.

Driven by the surge in unstructured medical data and the growing need for actionable insights, Natural Language Processing (NLP) technologies are increasingly being adopted to analyze clinical notes, patient records, scientific publications, and voice data. These solutions enhance healthcare outcomes by improving the speed, accuracy, and efficiency of information retrieval and decision-making. The market is poised for strong growth between 2025 and 2030, fueled by continued digital transformation, evolving healthcare delivery models, and the increasing demand for intelligent automation in clinical and operational workflows.

This report delivers an in-depth analysis of the NLP in the healthcare market, with a primary focus on software and platform solutions, while excluding services due to their relatively limited direct contribution to market value. The market is segmented by NLP techniques, applications, end users, deployment models, and geographic regions. By evaluating the role of each segment, the report offers strategic insights into competitive dynamics, key trends, and growth opportunities, equipping stakeholders with the information necessary to navigate and capitalize on developments in this rapidly advancing domain.

The 360 Quadrant maps the NLP in Healthcare & Life Sciences companies based on criteria such as revenue, geographic presence, growth strategies, investments, and sales strategies for the market presence of the NLP in Healthcare & Life Sciences quadrant. The top criteria for product footprint evaluation included By OFFERING (Software, Services), By DEPLOYMENT MODE (Cloud, On-premises), By NLP TYPE (Natural Language Understanding, Natural Language Generation), By NLP TECHNIQUE (Optical Character Recognition, Named Entity Recognition, Sentiment Analysis, Text Classification, Topic Modeling, Text Summarization, Other NLP Techniques), By APPLICATION (Patient Care & Engagement, Clinical Operations & Decision Support, Biomedical Research & Drug Development, Administrative & Operations Management, Genomics & Precision Medicine, Medical Education & Knowledge Dissemination, Other Applications), and By END USER (Clinical Practitioners, Healthcare Researchers, Healthcare Administrators, Health Insurance & Payer Professionals, Pharmaceutical & Biotech Companies, Other End Users).

Key Players

Key players in the NLP in Healthcare & Life Sciences market include major global corporations and specialized innovators such as Ibm, Microsoft, Google, Aws, Iqvia, Oracle, Inovalon, Dolbey Systems, Averbis, Sas Institute, Solventum, Press Ganey, Ellipsis Health, Lexalytics, Nvidia, Ge Healthcare, Clinithink, Hpe, Oncora Medical, Flatiron Health, Datavant, Edifecs, John Snow Labs, Itrex Group, Kms Healthcare, Appinventiv, Reveal Healthtech, Veritis, Optum, Health Catalyst, Amboss, Maruti Techlabs, and Deepscribe. These companies are actively investing in research and development, forming strategic partnerships, and engaging in collaborative initiatives to drive innovation, expand their global footprint, and maintain a competitive edge in this rapidly evolving market.

Top 3 Companies

Google

Google holds a significant position in the market by leveraging its deep AI capabilities and cloud infrastructure. The company offers scalable NLP solutions through Google Cloud, including products like AutoML and Vertex AI. These tools empower healthcare providers to extract insights from unstructured data, driving advancements in diagnostics and treatment personalization. Google's commitment to responsible AI, data security, and strategic global partnerships further consolidates its market leadership.

IQVIA

IQVIA excels in utilizing its vast repository of real-world healthcare data to enhance clinical trial efficiency and pharmacovigilance. The company deploys proprietary NLP engines to mine structured insights from various data forms, supporting drug discovery and commercial strategies. IQVIA's integrated analytics and extensive data assets position it as a pivotal player in transforming healthcare data into actionable intelligence.

Microsoft

Microsoft enhances its market presence through Azure Health Data Services, integrating NLP for efficient data processing and interoperability. By offering tools compliant with FHIR and embedded AI models, it supports healthcare workflows and clinical decision-making processes. Microsoft's strategy of leveraging AI technologies and strong industry partnerships cements its role in advancing the healthcare NLP landscape.

Table of Contents

153 Pages
1 Introduction
1.1 Market Definition
1.2 Inclusions And Exclusions
1.3 Stakeholders
2 Executive Summary
3 Market Overview
3.1 Introduction
3.2 Market Dynamics
3.2.1 Drivers
3.2.1.1 Surging Volume Of Unstructured Clinical Data
3.2.1.2 Rising Demand For Enhanced Care Delivery And Patient Engagement
3.2.1.3 Need For Predictive Analytics To Improve Significant Health Concerns
3.2.1.4 Increasing Focus On Enhancing Clinical Decision Support
3.2.2 Restraints
3.2.2.1 Clinical Accuracy And Reliability Concerns
3.2.2.2 Issues Related To Domain-specific Language And Medical Terminology In Nlp Model Development
3.2.2.3 Complexity In Integrating Nlp With Established Healthcare System
3.2.3 Opportunities
3.2.3.1 Rising Adoption Of Computer-assisted Coding To Enhance Productivity
3.2.3.2 Emergence Of Advanced Ai Technology For Generating Valuable Insights For Healthcare
3.2.3.3 Emergence Of Cognitive Computing For Medicine Applications
3.2.4 Challenges
3.2.4.1 Model Training Data Limitations
3.2.4.2 High Cost Of Implementation And Maintenance Of Nlp Technology
3.2.4.3 Explainability And Interpretability Issues While Deploying Nlp Algorithms
3.3 Impact Of 2025 Us Tariff—nlp In Healthcare & Life Sciences Market
3.3.1 Introduction
3.3.2 Key Tariff Rates
3.3.3 Price Impact Analysis
3.3.3.1 Strategic Shifts And Emerging Trends
3.3.4 Impact On Country/Region
3.3.4.1 Us
3.3.4.1.1 Strategic Shifts And Key Observations
3.3.4.2 China
3.3.4.2.1 Strategic Shifts And Key Observations
3.3.4.3 Europe
3.3.4.3.1 Strategic Shifts And Key Observations
3.3.4.4 India
3.3.4.4.1 Strategic Shifts And Key Observations
3.3.5 Impact On End-use Industries
3.3.5.1 Clinical Practitioners
3.3.5.2 Healthcare Researchers
3.3.5.3 Pharmaceutical & Biotech Companies
3.4 Evolution Of Nlp In Healthcare & Life Sciences Market
3.5 Nlp In Healthcare & Life Sciences Market: Architecture
3.6 Supply Chain Analysis
3.7 Ecosystem Analysis
3.7.1 Software & Service Providers By Application
3.7.1.1 Patient Care & Engagement
3.7.1.2 Clinical Operations & Decision Support
3.7.1.3 Biomedical Research & Drug Development
3.7.1.4 Administrative & Operations Management
3.7.1.5 Genomics & Precision Medicine
3.7.1.6 Medical Education & Knowledge Dissemination
3.8 Technology Analysis
3.8.1 Key Technologies
3.8.1.1 Generative Ai
3.8.1.2 Natural Language Processing (Nlp)
3.8.1.3 Machine Learning
3.8.1.4 Computer Vision
3.8.2 Complimentary Technologies
3.8.2.1 Conversational Ai
3.8.2.2 Emotion Ai
3.8.2.3 Cloud Computing
3.8.3 Adjacent Technologies
3.8.3.1 Edge Ai
3.8.3.2 Blockchain
3.8.3.3 Ar/Vr
3.9 Patent Analysis
3.9.1 Methodology
3.9.2 Patents Filed, By Document Type
3.9.3 Innovation And Patent Applications
3.10 Key Conferences And Events, 2025–2026
3.11 Nlp In Healthcare & Life Sciences Market: Business Models
3.11.1 Saas Model
3.11.2 Consulting Services Model
3.11.3 Revenue Sharing Model
3.11.4 Pay-per-use Model
3.12 Porter’s Five Forces Analysis
3.12.1 Threat Of New Entrants
3.12.2 Threat Of Substitutes
3.12.3 Bargaining Power Of Suppliers
3.12.4 Bargaining Power Of Buyers
3.12.5 Intensity Of Competitive Rivalry
3.13 Trends/Disruptions Impacting Customer Business
4 Competitive Landscape
4.1 Overview
4.2 Key Player Strategies/Right To Win, 2022–2025
4.3 Revenue Analysis, 2020–2024
4.4 Market Share Analysis, 2024
4.5 Product Comparative Analysis
4.5.1 Product Comparative Analysis, By Offering
4.5.1.1 Health Discovery (Averbis)
4.5.1.2 Fusion Cdi (Dolbey Systems)
4.5.1.3 Clinical Documentation Integrity (Solventum)
4.5.1.4 Cloud Healthcare Api (Google)
4.5.1.5 Inovalon One Platform (Inovalon)
4.5.2 Product Comparative Analysis, By Application
4.5.2.1 Ibm Watsonx Assistant (Ibm)
4.5.2.2 Microsoft Dragon Copilot (Microsoft)
4.5.2.3 Oracle Clinical Digital Assistant (Oracle)
4.5.2.4 Iqvia Nlp Risk Adjustment (Iqvia)
4.5.2.5 Aws Healthlake (Aws)
4.6 Company Valuation And Financial Metrics
4.7 Company Evaluation Matrix: Key Players, 2024
4.7.1 Stars
4.7.2 Emerging Leaders
4.7.3 Pervasive Players
4.7.4 Participants
4.7.5 Company Footprint: Key Players, 2024
4.7.5.1 Company Footprint
4.7.5.2 Regional Footprint
4.7.5.3 Offering Footprint
4.7.5.4 Application Footprint
4.7.5.5 End User Footprint
4.8 Company Evaluation Matrix: Startups/Smes, 2024
4.8.1 Progressive Companies
4.8.2 Responsive Companies
4.8.3 Dynamic Companies
4.8.4 Starting Blocks
4.8.5 Competitive Benchmarking: Startups/Smes, 2024
4.8.5.1 Detailed List Of Key Startups/Smes
4.8.5.2 Competitive Benchmarking Of Key Startups/Smes
4.9 Competitive Scenario And Trends
4.9.1 Product Launches And Enhancements
4.9.2 Deals
5 Company Profiles
5.1 Introduction
5.2 Key Players
5.2.1 Ibm
5.2.1.1 Business Overview
5.2.1.2 Products/Solutions/Services Offered
5.2.1.3 Recent Developments
5.2.1.4 Mnm View
5.2.1.4.1 Right To Win
5.2.1.4.2 Strategic Choices
5.2.1.4.3 Weaknesses And Competitive Threats
5.2.2 Microsoft
5.2.2.1 Business Overview
5.2.2.2 Products/Solutions/Services Offered
5.2.2.3 Recent Developments
5.2.2.4 Mnm View
5.2.2.4.1 Right To Win
5.2.2.4.2 Strategic Choices
5.2.2.4.3 Weaknesses And Competitive Threats
5.2.3 Google
5.2.3.1 Business Overview
5.2.3.2 Products/Solutions/Services Offered
5.2.3.3 Recent Developments
5.2.3.4 Mnm View
5.2.3.4.1 Right To Win
5.2.3.4.2 Strategic Choices
5.2.3.4.3 Weaknesses And Competitive Threats
5.2.4 Aws
5.2.4.1 Business Overview
5.2.4.2 Products/Solutions/Services Offered
5.2.4.3 Recent Developments
5.2.4.4 Mnm View
5.2.4.4.1 Right To Win
5.2.4.4.2 Strategic Choices
5.2.4.4.3 Weaknesses And Competitive Threats
5.2.5 Iqvia
5.2.5.1 Business Overview
5.2.5.2 Products/Solutions/Services Offered
5.2.5.3 Recent Developments
5.2.5.4 Mnm View
5.2.5.4.1 Right To Win
5.2.5.4.2 Strategic Choices
5.2.5.4.3 Weaknesses And Competitive Threats
5.2.6 Oracle
5.2.6.1 Business Overview
5.2.6.2 Products/Solutions/Services Offered
5.2.6.3 Recent Developments
5.2.7 Inovalon
5.2.7.1 Business Overview
5.2.7.2 Products/Solutions/Services Offered
5.2.7.3 Recent Developments
5.2.8 Dolbey Systems
5.2.8.1 Business Overview
5.2.8.2 Products/Solutions/Services Offered
5.2.8.3 Recent Developments
5.2.9 Averbis
5.2.9.1 Business Overview
5.2.9.2 Products/Solutions/Services Offered
5.2.9.3 Recent Developments
5.2.10 Sas Institute
5.2.10.1 Business Overview
5.2.10.2 Products/Solutions/Services Offered
5.2.10.3 Recent Developments
5.2.11 Solventum
5.2.11.1 Business Overview
5.2.11.2 Products/Solutions/Services Offered
5.2.11.3 Recent Developments
5.2.12 Press Ganey
5.2.13 Ellipsis Health
5.2.14 Lexalytics
5.2.15 Nvidia
5.2.16 Ge Healthcare
5.2.17 Clinithink
5.2.18 Hpe
5.2.19 Oncora Medical
5.2.20 Flatiron Health
5.2.21 Datavant
5.2.22 Edifecs
5.2.23 John Snow Labs
5.2.24 Itrex Group
5.2.25 Kms Healthcare
5.2.26 Appinventiv
5.2.27 Reveal Healthtech
5.2.28 Veritis
5.2.29 Optum
5.2.30 Health Catalyst
5.2.31 Amboss
5.2.32 Maruti Techlabs
5.2.33 Deepscribe
5.3 Other Players
5.3.1 Foresee Medical
5.3.2 Gnani.Ai
5.3.3 Notable Health
5.3.4 Biofourmis
5.3.5 Suki Ai
5.3.6 Wave Health Technologies
5.3.7 Corti
5.3.8 Cloudmedx
5.3.9 Emtelligent
5.3.10 Enlitic
5.3.11 Deep 6 Ai
6 Appendix
6.1 Research Methodology
6.1.1 Research Data
6.1.1.1 Secondary Data
6.1.1.2 Primary Data
6.1.2 Research Assumptions
6.1.3 Research Limitations
6.2 Company Evaluation Matrix: Methodology

Search Inside Report

How Do Licenses Work?
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.