
Predictive Maintenance in Power - Thematic Research
Description
Predictive Maintenance in Power - Thematic Research
Summary
Predictive maintenance tools assess the condition of operational equipment and allow users to foresee any necessary maintenance requirements, in order to attain optimum performance and avoid potentially costly equipment failures.
Remote monitoring is a crucial element of predictive maintenance, and remote and centralized observation platforms have boosted the decision-making process. There has been a rising interest in decision models for predictive maintenance, triggered by failure predictions. Over the next decade, predictive maintenance tools will become even more widespread across the critical infrastructure in the power industry, as they provide operational and financial fluidity through the use of technology.
Older power plant facilities face the increased risk of unplanned downtime. These may contribute to excess greenhouse gas (GHG) emissions. Using predictive maintenance tools, the performance of older power plant equipment can be enhanced. The COVID-19 pandemic also alerted the power industry to the perils of shortages of skilled maintenance personnel, especially in the case of equipment breakdowns in remote locations. Predictive maintenance can help improve human resource allocation, thereby boosting productivity and enhancing utilities’ financial position and brand value, leading to increased customer satisfaction.
The emergence and swift growth of innovative technologies such as the Internet of Things (IoT), artificial intelligence (AI), augmented and virtual reality (AR/VR), big data, and cloud computing have shaped the maintenance strategies of the power industry. The base measurement technologies for predictive maintenance-such as vibration monitoring and thermal imaging-have also improved, as huge amounts of data and analytical capabilities are available, thanks to the rise in digital transformation projects across the power industry.
Scope
Summary
Predictive maintenance tools assess the condition of operational equipment and allow users to foresee any necessary maintenance requirements, in order to attain optimum performance and avoid potentially costly equipment failures.
Remote monitoring is a crucial element of predictive maintenance, and remote and centralized observation platforms have boosted the decision-making process. There has been a rising interest in decision models for predictive maintenance, triggered by failure predictions. Over the next decade, predictive maintenance tools will become even more widespread across the critical infrastructure in the power industry, as they provide operational and financial fluidity through the use of technology.
Older power plant facilities face the increased risk of unplanned downtime. These may contribute to excess greenhouse gas (GHG) emissions. Using predictive maintenance tools, the performance of older power plant equipment can be enhanced. The COVID-19 pandemic also alerted the power industry to the perils of shortages of skilled maintenance personnel, especially in the case of equipment breakdowns in remote locations. Predictive maintenance can help improve human resource allocation, thereby boosting productivity and enhancing utilities’ financial position and brand value, leading to increased customer satisfaction.
The emergence and swift growth of innovative technologies such as the Internet of Things (IoT), artificial intelligence (AI), augmented and virtual reality (AR/VR), big data, and cloud computing have shaped the maintenance strategies of the power industry. The base measurement technologies for predictive maintenance-such as vibration monitoring and thermal imaging-have also improved, as huge amounts of data and analytical capabilities are available, thanks to the rise in digital transformation projects across the power industry.
Scope
- Overview of the evolution of predictive maintenance as a theme and key technologies employed.
- Review of application of predictive maintenance strategies in power industry.
- Detailed analysis of the predictive maintenance value chain, its role within the power value chain, and corresponding participation of major players.
- Highlighting of the various industry, technology, and macroeconomic trends influencing the predictive maintenance theme.
- Assessment of the strategies and initiatives adopted by power companies to gain a competitive advantage in this theme.
- Identify the key industry, technology, and macroeconomic trends impacting the predictive maintenance theme.
- Deployment of predictive maintenance strategies in power industry.
- Understand the predictive maintenance value chain and the key players in it.
- Identify and benchmark key power utility players and power system services companies based on their competitive positioning in the predictive maintenance theme.
Table of Contents
46 Pages
- Executive Summary
- Figure 1: Who are the leading players in predictive maintenance in the power sector?
- Evolution of maintenance: from reactive to proactive
- Predictive maintenance technologies in the power industry
- Setting up a predictive maintenance system
- Importance of predictive maintenance for aging infrastructure
- Power trends
- Technology trends
- Macroeconomic trends
- Profits and technology driving predictive maintenance adoption
- Predictive maintenance to enhance transmission and distribution
- Predictive maintenance to enhance power generation efficiency
- Predictive maintenance for inspection and maintenance
- M&A activities
- Timeline
- Figure 9: Interaction of predictive maintenance technologies with the power value chain
- Figure 10: Predictive maintenance value chain
- Device layer
- Connectivity layer
- Data layer
- App layer
- Services layer
- Power utilities
- Power system services companies
- Power sector scorecard
- Glossary
- GlobalData reports
- Figure 19: Our five-step approach for generating a sector scorecard
- About GlobalData
- Contact Us
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.