Report cover image

Neuromorphic Hardware

Published Jan 01, 2026
Length 160 Pages
SKU # Univ20880594

Description

The Neuromorphic Hardware Market is expected to grow at a robust CAGR of 22.46% during the forecast period (2025-2033F). The global neuromorphic hardware market is expected to grow robustly during the forecast period due to the dire necessity to have ultra-efficient, low-latency AI computing at the edge and in power-constrained settings. This expansion is enabled by the fact that there is a growing need for real-time perception and decision making in robotics, autonomous systems, industrial automation, and next-generation consumer devices, as well as mounting pressure to lower the energy and cost footprint of traditional GPU/CPU-based AI, with the drive to global industries to move towards always-on intelligence with tighter sustainability goals and higher data-privacy demands, neuromorphic architectures based on brain-like spiking neural networks-are receiving an ever-increasing interest to provide event-driven processing that consumes power orders of magnitude less. It finds application most where asynchronous computation is useful (e.g., smart sensors, vision systems, adaptive control, and embedded inference), where responsiveness is important, bandwidth requirements are limited, and continuous learning (at the data source) is achievable. Further, long-term market development is driven by material science and device engineering-like memristive components, new non-volatile memories, and better on-chip interconnects, which are simpler to scale, are more reliable, and easier to manufacture, and address long-standing problems, such as the complexity of training and ecosystem fragmentation.
  • Based on component type, the global neuromorphic hardware market is segmented into Processors, Memory and Storage, Sensors and Supporting Hardware, and Software and Tools. In 2024, the Processors segment is anticipated to hold the largest market share and maintain its dominance throughout the forecast period. This is largely because neuromorphic processors (such as event-driven inference chips or spiking neural network accelerators) are at the core of the compute layer that enables ultra-low-power, low-latency pattern recognition and adaptive decision-making across edge devices, robotics, and intelligent sensory platforms. Their ability to execute workloads very sparsely and asynchronously, frequently with less data movement and simpler signal-processing pipelines, makes them the investment choice for OEMs and system integrators to enhance performance per watt by addressing real-time performance requirements. In addition, processor-level innovation, including higher neuron/synapse density, on-chip interconnects, and closer integration with traditional CPUs/MCUs, enhances deployment flexibility and accelerates commercialization in both industrial and automotive-grade environments. The Software and Tools category will also grow at the fastest pace as more ecosystems develop, particularly through advances in compilers, SNN training platforms, model conversion toolkits, and benchmarking suites that reduce barriers to adoption and enable broader developer participation.
  • Based on deployment mode, the global neuromorphic hardware market is segmented into Edge Devices, On-Premises Data Centers, and Cloud-Based Platforms. In 2024, the Edge Devices segment is anticipated to hold the largest market share and sustain its dominance throughout the forecast period. This is mainly because neuromorphic systems are designed to execute event-driven, low-power, real-time inference, making them highly applicable on resource-constrained endpoints such as smart cameras, autonomous robots, drones, wearables, industrial controllers, and intelligent Internet of Things nodes. Local processing of sensory data using edge neuromorphic hardware accelerates latency. It minimizes bandwidth consumption, enabling privacy-centric architectures in which continuous streaming to centralized servers is infeasible or limited. Further, spiking processors can be combined with event-based sensors to create efficient perception pipelines that are responsive in dynamic environments, require less thermal load, and have prolonged battery life, which are important considerations in field-deployed systems. But the On-Premises Data Centers segment will experience the fastest growth as enterprises deploy neuromorphic accelerators to specialized workloads, including high-throughput signal analytics, adaptive control, and research-oriented simulation, where deterministic performance, security, or regulatory considerations favor local infrastructure.
  • Based on application, the global neuromorphic hardware market is segmented into Image and Signal Processing, Natural Language Processing, Robotics and Autonomous Systems, Cybersecurity and Edge AI, Healthcare and Medical Imaging, Industrial Automation, and Others. In 2024, the Robotics and Autonomous Systems segment is anticipated to hold the largest market share and continue its dominance throughout the forecast period. This is mainly because autonomous platforms demand low-latency perception and closed-loop control with severe power and computation limitations- conditions in which neuromorphic processors together with event-based sensing can be more responsive and efficient than conventional architectures. Neuromorphic design is becoming a popular choice in applications such as obstacle detection, localization, sensor fusion, and adaptive motion control, where sparse, time-sensitive signals require real-time processing, battery life is limited, and thermal operation in a miniature form factor is required. Additionally, neuromorphic architectures can enable robust behavior in dynamic systems by focusing on temporal encoding and noise-resistant inference, which is useful for mobile robots and autonomous machines operating in changing light and weather conditions or cluttered scenes. The segment that will experience the greatest growth in Cybersecurity and Edge AI, where organizations are demanding always-on threat detection and anomaly recognition directly on endpoints due to increased attack surfaces and the need to reduce reliance on the cloud to store sensitive data.
  • For a better understanding of the market for the global neuromorphic hardware market, the market is analyzed based on its worldwide presence in regions such as North America (the US, Canada, and Rest of North America), Europe (Germany, the UK, France, Italy, Spain, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), and Rest of World. The North America region dominates the global neuromorphic hardware market and is expected to maintain its lead over the forecast period. The primary driver of this leadership is the concentration of semiconductor innovation, AI research institutions, defense and aerospace programs, and deep-tech capital in the United States, particularly with Canadian support for advanced research and startups, which has accelerated the commercialization of neuromorphic processors and event-driven sensing platforms. One of the main factors that make the region a highly popular market for neuromorphic hardware in 2024 is the early adoption of energy-efficient neuromorphic computing across North America, particularly in edge computing, robotics, and mission-critical industrial and security workloads. Moreover, the ecosystem is well equipped with mature tools; pilot deployments are active; and there is strong collaboration among chip developers, cloud/edge platform vendors, system integrators, and end users, which supports faster validation cycles and facilitates the rapid scale-up of prototypes to actual deployments. With enterprises prioritizing low-latency on-device inference, privacy-aware processing, and power optimization, North America is well positioned to meet demand for next-generation autonomous, industrial, and national security applications.
  • Some of the major players operating in the market include SynSense, BrainChip, Inc., General Vision Inc., Hewlett Packard Enterprise Development LP, IBM Corporation, Innatera Nanosystems BV, Intel Corporation, Knowm Inc., Blumind, and Numenta.

Table of Contents

160 Pages
1 Market Introduction
1.1. Market Definitions
1.2. Main Objective
1.3. Stakeholders
1.4. Limitation
2 Research Methodology Or Assumption
2.1. Research Process of the Neuromorphic Hardware Market
2.2. Research Methodology of the Neuromorphic Hardware Market
2.3. Respondent Profile
3 Executive Summary
3.1. Industry Synopsis
3.2. Segmental Outlook
3.2.1. Market Growth Intensity
3.3. Regional Outlook
4 Market Dynamics
4.1. Drivers
4.2. Opportunity
4.3. Restraints
4.4. Trends
4.5. PESTEL Analysis
4.6. Demand Side Analysis
4.7. Supply Side Analysis
4.7.1. Merger & Acquisition
4.7.2. Investment Scenario
4.7.3. Industry Insights: Leading Startups and Their Unique Strategies
5 Pricing Analysis
5.1. Regional Pricing Analysis
5.2. Price Influencing Factors
6 Global Neuromorphic Hardware Market Revenue (USD Mn), 2023-2033F
7 Market Insights By Component
7.1. Processors
7.2. Memory and Storage
7.3. Sensors and Supporting Hardware
7.4. Software and Tools
8 Market Insights By Deployment Mode
8.1. Edge Devices
8.2. On-Premises Data Centers
8.3. Cloud-Based Platforms
9 Market Insights By Application
9.1. Image and Signal Processing
9.2. Natural Language Processing
9.3. Robotics and Autonomous Systems
9.4. Cybersecurity and Edge AI
9.5. Healthcare and Medical Imaging
9.6. Industrial Automation
9.7. Others
10 Market Insights By Region
10.1. North America
10.1.1. The US
10.1.2. Canada
10.1.3. Rest of North America
10.2. Europe
10.2.1. Germany
10.2.2. The UK
10.2.3. France
10.2.4. Italy
10.2.5. Spain
10.2.6. Rest of Europe
10.3. Asia-Pacific
10.3.1. China
10.3.2. Japan
10.3.3. India
10.3.4. Rest of Asia-Pacific
10.4. Rest of World
11 Value Chain Analysis
11.1. Marginal Analysis
11.2. List of Market Participants
12 Competitive Landscape
12.1 Competition Dashboard
12.2. Competitor Market Positioning Analysis
12.3. Porter Five Forces Analysis
13 Company Profiles
13.1. SynSense
13.1.1. Company Overview
13.1.2. Key Financials
13.1.3. SWOT Analysis
13.1.4. Product Portfolio
13.1.5. Recent Developments
13.2. BrainChip, Inc.
13.3. General Vision Inc.
13.4. Hewlett Packard Enterprise Development LP
13.5. IBM Corporation
13.6. Innatera Nanosystems BV
13.7. Intel Corporation
13.8. Knowm Inc.
13.9. Blumind
13.10. Numenta
14 Acronyms & Assumption
15 Annexure
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.