AI in Automotive Market
Description
AI in Automotive Market – Scope of Report
TMR’s report on the global AI in Automotive Market studies the past as well as the current growth trends and opportunities to gain valuable insights of the indicators of the Market during the forecast period from 2025 to 2035. The report provides revenue of the global AI in Automotive Market for the period 2025 to 2035, considering 2025 as the base year and 2035 as the forecast year. The report also provides the compound annual growth rate (CAGR %) of the global AI in Automotive Market from 2025 to 2035.
The report has been prepared after an extensive research. Primary research involved bulk of the research efforts, wherein analysts carried out interviews with key opinion leaders, industry leaders, and opinion makers. Secondary research involved referring to key players’ product literature, annual reports, press releases, and relevant documents to understand the Global AI in Automotive Market.
Secondary research also included Internet sources, statistical data from government agencies, websites, and trade associations. Analysts employed a combination of top-down and bottom-up approaches to study various attributes of the Global AI in Automotive Market .
The report includes an elaborate executive summary, along with a snapshot of the growth behavior of various segments included in the scope of the study. Moreover, the report throws light on the changing competitive dynamics in the Global AI in Automotive Market. These serve as valuable tools for existing Market players as well as for entities interested in participating in the Global AI in Automotive Market .
The report delves into the competitive landscape of the Global AI in Automotive Market. Key players operating in the global AI in Automotive Market have been identified and each one of these has been profiled in terms of various attributes. Company overview, financial standings, recent developments, and SWOT are the attributes of players in the global AI in Automotive Market profiled in this report.
Key Questions Answered in Global AI in Automotive Market Report
The comprehensive report on the global AI in Automotive Market begins with an overview, followed by the scope and objectives of the study. The report provides detailed explanation of the objectives behind this study and key vendors and distributors operating in the Market and regulatory scenario for approval of products.
For reading comprehensibility, the report has been compiled in a chapter-wise layout, with each section divided into smaller ones. The report comprises an exhaustive collection of graphs and tables that are appropriately interspersed. Pictorial representation of actual and projected values of key segments is visually appealing to readers. This also allows comparison of the Market shares of key segments in the past and at the end of the forecast period.
The report analyzes the global AI in Automotive Market in terms of product, end-user, and region. Key segments under each criterion have been studied at length, and the Market Share for each of these at the end of 2035 has been provided. Such valuable insights enable Market stakeholders in making informed business decisions for investment in the AI in Automotive Market.
Please Note: Report will be updated with the latest data and delivered to you within 2-3 business days.
TMR’s report on the global AI in Automotive Market studies the past as well as the current growth trends and opportunities to gain valuable insights of the indicators of the Market during the forecast period from 2025 to 2035. The report provides revenue of the global AI in Automotive Market for the period 2025 to 2035, considering 2025 as the base year and 2035 as the forecast year. The report also provides the compound annual growth rate (CAGR %) of the global AI in Automotive Market from 2025 to 2035.
The report has been prepared after an extensive research. Primary research involved bulk of the research efforts, wherein analysts carried out interviews with key opinion leaders, industry leaders, and opinion makers. Secondary research involved referring to key players’ product literature, annual reports, press releases, and relevant documents to understand the Global AI in Automotive Market.
Secondary research also included Internet sources, statistical data from government agencies, websites, and trade associations. Analysts employed a combination of top-down and bottom-up approaches to study various attributes of the Global AI in Automotive Market .
The report includes an elaborate executive summary, along with a snapshot of the growth behavior of various segments included in the scope of the study. Moreover, the report throws light on the changing competitive dynamics in the Global AI in Automotive Market. These serve as valuable tools for existing Market players as well as for entities interested in participating in the Global AI in Automotive Market .
The report delves into the competitive landscape of the Global AI in Automotive Market. Key players operating in the global AI in Automotive Market have been identified and each one of these has been profiled in terms of various attributes. Company overview, financial standings, recent developments, and SWOT are the attributes of players in the global AI in Automotive Market profiled in this report.
Key Questions Answered in Global AI in Automotive Market Report
- What is the sales/revenue generated by AI in Automotive Market across all regions during the forecast period?
- What are the opportunities in the global AI in Automotive Market?
- What are the major drivers, restraints, opportunities, and threats in the Market?
- Which regional Market is set to expand at the fastest CAGR during the forecast period?
- Which segment is expected to generate the highest revenue globally in 2035?
- Which segment is projected to expand at the highest CAGR during the forecast period?
- What are the Market positions of different companies operating in the global Market?
The comprehensive report on the global AI in Automotive Market begins with an overview, followed by the scope and objectives of the study. The report provides detailed explanation of the objectives behind this study and key vendors and distributors operating in the Market and regulatory scenario for approval of products.
For reading comprehensibility, the report has been compiled in a chapter-wise layout, with each section divided into smaller ones. The report comprises an exhaustive collection of graphs and tables that are appropriately interspersed. Pictorial representation of actual and projected values of key segments is visually appealing to readers. This also allows comparison of the Market shares of key segments in the past and at the end of the forecast period.
The report analyzes the global AI in Automotive Market in terms of product, end-user, and region. Key segments under each criterion have been studied at length, and the Market Share for each of these at the end of 2035 has been provided. Such valuable insights enable Market stakeholders in making informed business decisions for investment in the AI in Automotive Market.
Please Note: Report will be updated with the latest data and delivered to you within 2-3 business days.
Table of Contents
720 Pages
- 1. Preface
- 1.1. Market Definition and Scope
- 1.2. Market Segmentation
- 1.3. Key Research Objectives
- 1.4. Research Highlights
- 2. Assumptions and Research Methodology
- 3. Executive Summary: Global AI in Automotive Market
- 4. Market Overview
- 4.1. Introduction
- 4.1.1. Segment Definition
- 4.1.2. Industry Evolution / Developments
- 4.2. Overview
- 4.3. Market Dynamics
- 4.3.1. Drivers
- 4.3.2. Restraints
- 4.3.3. Opportunities
- 4.4. Global AI in Automotive Market Analysis and Forecast, 2021-2036
- 4.4.1. Market Revenue Projections (US$ Bn)
- 5. Key Insights
- 5.1. AI Adoption & Deployment Trends across Vehicle Segments
- 5.2. Pricing Analysis (AI Software, Hardware Accelerators, System ASP by Region/Country)
- 5.3. Regulatory Scenario by Key Country/Region
- 5.4. Key Industry Events
- 5.5. Market Trends
- 5.6. Value Chain Analysis
- 5.7. Ecosystem Analysis
- 5.8. Porter’s Five Forces Analysis
- 5.9. PESTEL Analysis
- 5.10. Technology Landscape
- 5.11. Go-to-Market Strategy for New Market Entrants
- 5.12. Cost Structure & ROI Analysis
- 6. Global AI in Automotive Market Analysis and Forecast, by Component
- 6.1. Introduction & Definition
- 6.2. Key Findings/Developments
- 6.3. Market Value Forecast, by Component, 2021-2036
- 6.3.1. Hardware
- 6.3.1.1. AI Chips / Processors (GPU, FPGA, SoC, ASICs)
- 6.3.1.2. Sensors (LiDAR, Radar, Cameras, Ultrasonic)
- 6.3.1.3. Connectivity Modules (5G/Edge)
- 6.3.1.4. Others
- 6.3.2. Software
- 6.3.2.1. AI Frameworks & Algorithms
- 6.3.2.2. Perception / Sensor Fusion
- 6.3.2.3. Real-Time Decision Engines
- 6.3.2.4. Others
- 6.3.3. Platforms
- 6.3.3.1. Automotive AI Platforms
- 6.3.3.2. AI Cloud Platforms
- 6.3.3.3. Autonomous Driving Software Stacks
- 6.3.3.4. Others
- 6.3.4. Services
- 6.3.4.1. Integration & Development Services
- 6.3.4.2. Security & Compliance
- 6.3.4.3. Maintenance & Support Services
- 6.3.4.4. Others
- 6.4. Market Attractiveness Analysis, by Component
- 7. Global AI in Automotive Market Analysis and Forecast, by Application
- 7.1. Introduction & Definition
- 7.2. Key Findings/Developments
- 7.3. Market Value Forecast, by Application, 2021-2036
- 7.3.1. Advanced Driver Assistance Systems (ADAS)
- 7.3.2. Driver Monitoring & In-Cabin AI
- 7.3.3. Autonomous / Self-Driving Vehicles
- 7.3.4. Infotainment & Voice/AI Assistants
- 7.3.5. Fleet Management & Telematics
- 7.3.6. Others
- 7.4. Market Attractiveness Analysis, by Application
- 8. Global AI in Automotive Market Analysis and Forecast, by Technology
- 8.1. Introduction & Definition
- 8.2. Key Findings/Developments
- 8.3. Market Value Forecast, by Technology, 2021-2036
- 8.3.1. Machine Learning (ML)
- 8.3.2. Deep Learning
- 8.3.3. Computer Vision
- 8.3.4. Neural Networks
- 8.3.5. Cloud AI
- 8.3.6. Others
- 8.4. Market Attractiveness Analysis, by Technology
- 9. Global AI in Automotive Market Analysis and Forecast, by Vehicle Type
- 9.1. Introduction & Definition
- 9.2. Key Findings/Developments
- 9.3. Market Value Forecast, by Vehicle Type, 2021-2036
- 9.3.1. Two & Three-Wheelers
- 9.3.2. Passenger Cars
- 9.3.3. Commercial Vehicles
- 9.3.4. Off-Highway Vehicles
- 9.4. Market Attractiveness Analysis, by Vehicle Type
- 10. Global AI in Automotive Market Analysis and Forecast, by Level of Automation
- 10.1. Introduction & Definition
- 10.2. Key Findings/Developments
- 10.3. Market Value Forecast, by Level of Automation, 2021-2036
- 10.3.1. Level 1 (Driver Assistance)
- 10.3.2. Level 2 (Partial Autonomy)
- 10.3.3. Level 3 (Conditional Autonomy)
- 10.3.4. Level 4 (High Autonomy)
- 10.3.5. Level 5 (Full Autonomy)
- 10.4. Market Attractiveness Analysis, by Level of Automation
- 11. Global AI in Automotive Market Analysis and Forecast, by End User
- 11.1. Introduction & Definition
- 11.2. Key Findings/Developments
- 11.3. Market Value Forecast, by End User, 2021-2036
- 11.3.1. OEMs
- 11.3.2. Suppliers
- 11.3.3. Fleet Operators
- 11.3.4. Aftermarket
- 11.4. Market Attractiveness Analysis, by End User
- 12. Global AI in Automotive Market Analysis and Forecast, by Region
- 12.1. Key Findings
- 12.2. Market Value Forecast, by Region, 2021-2036
- 12.2.1. North America
- 12.2.2. Europe
- 12.2.3. Asia Pacific
- 12.2.4. Latin America
- 12.2.5. Middle East & Africa
- 12.3. Market Attractiveness Analysis, by Region
- 13. North America AI in Automotive Market Analysis and Forecast
- 13.1. Introduction
- 13.1.1. Key Findings
- 13.2. Market Value Forecast, by Component, 2021-2036
- 13.2.1. Hardware
- 13.2.1.1. AI Chips / Processors (GPU, FPGA, SoC, ASICs)
- 13.2.1.2. Sensors (LiDAR, Radar, Cameras, Ultrasonic)
- 13.2.1.3. Connectivity Modules (5G/Edge)
- 13.2.1.4. Others
- 13.2.2. Software
- 13.2.2.1. AI Frameworks & Algorithms
- 13.2.2.2. Perception / Sensor Fusion
- 13.2.2.3. Real-Time Decision Engines
- 13.2.2.4. Others
- 13.2.3. Platforms
- 13.2.3.1. Automotive AI Platforms
- 13.2.3.2. AI Cloud Platforms
- 13.2.3.3. Autonomous Driving Software Stacks
- 13.2.3.4. Others
- 13.2.4. Services
- 13.2.4.1. Integration & Development Services
- 13.2.4.2. Security & Compliance
- 13.2.4.3. Maintenance & Support Services
- 13.2.4.4. Others
- 13.3. Market Value Forecast, by Application, 2021-2036
- 13.3.1. Advanced Driver Assistance Systems (ADAS)
- 13.3.2. Driver Monitoring & In-Cabin AI
- 13.3.3. Autonomous / Self-Driving Vehicles
- 13.3.4. Infotainment & Voice/AI Assistants
- 13.3.5. Fleet Management & Telematics
- 13.3.6. Others
- 13.4. Market Value Forecast, by Technology, 2021-2036
- 13.4.1. Machine Learning (ML)
- 13.4.2. Deep Learning
- 13.4.3. Computer Vision
- 13.4.4. Neural Networks
- 13.4.5. Cloud AI
- 13.4.6. Others
- 13.5. Market Value Forecast, by Vehicle Type, 2021-2036
- 13.5.1. Two & Three-Wheelers
- 13.5.2. Passenger Cars
- 13.5.3. Commercial Vehicles
- 13.5.4. Off-Highway Vehicles
- 13.6. Market Value Forecast, by Level of Automation, 2021-2036
- 13.6.1. Level 1 (Driver Assistance)
- 13.6.2. Level 2 (Partial Autonomy)
- 13.6.3. Level 3 (Conditional Autonomy)
- 13.6.4. Level 4 (High Autonomy)
- 13.6.5. Level 5 (Full Autonomy)
- 13.7. Market Value Forecast, by End User, 2021-2036
- 13.7.1. OEMs
- 13.7.2. Suppliers
- 13.7.3. Fleet Operators
- 13.7.4. Aftermarket
- 13.8. Market Value Forecast, by Country, 2021-2036
- 13.8.1. U.S.
- 13.8.2. Canada
- 13.9. Market Attractiveness Analysis
- 13.9.1. By Component
- 13.9.2. By Application
- 13.9.3. By Technology
- 13.9.4. By Vehicle Type
- 13.9.5. By Level of Automation
- 13.9.6. By End User
- 13.9.7. By Country
- 14. U.S. AI in Automotive Market Analysis and Forecast
- 14.1. Introduction
- 14.1.1. Key Findings
- 14.2. Market Value Forecast, by Component, 2021-2036
- 14.2.1. Hardware
- 14.2.1.1. AI Chips / Processors (GPU, FPGA, SoC, ASICs)
- 14.2.1.2. Sensors (LiDAR, Radar, Cameras, Ultrasonic)
- 14.2.1.3. Connectivity Modules (5G/Edge)
- 14.2.1.4. Others
- 14.2.2. Software
- 14.2.2.1. AI Frameworks & Algorithms
- 14.2.2.2. Perception / Sensor Fusion
- 14.2.2.3. Real-Time Decision Engines
- 14.2.2.4. Others
- 14.2.3. Platforms
- 14.2.3.1. Automotive AI Platforms
- 14.2.3.2. AI Cloud Platforms
- 14.2.3.3. Autonomous Driving Software Stacks
- 14.2.3.4. Others
- 14.2.4. Services
- 14.2.4.1. Integration & Development Services
- 14.2.4.2. Security & Compliance
- 14.2.4.3. Maintenance & Support Services
- 14.2.4.4. Others
- 14.3. Market Value Forecast, by Application, 2021-2036
- 14.3.1. Advanced Driver Assistance Systems (ADAS)
- 14.3.2. Driver Monitoring & In-Cabin AI
- 14.3.3. Autonomous / Self-Driving Vehicles
- 14.3.4. Infotainment & Voice/AI Assistants
- 14.3.5. Fleet Management & Telematics
- 14.3.6. Others
- 14.4. Market Value Forecast, by Technology, 2021-2036
- 14.4.1. Machine Learning (ML)
- 14.4.2. Deep Learning
- 14.4.3. Computer Vision
- 14.4.4. Neural Networks
- 14.4.5. Cloud AI
- 14.4.6. Others
- 14.5. Market Value Forecast, by Vehicle Type, 2021-2036
- 14.5.1. Two & Three-Wheelers
- 14.5.2. Passenger Cars
- 14.5.3. Commercial Vehicles
- 14.5.4. Off-Highway Vehicles
- 14.6. Market Value Forecast, by Level of Automation, 2021-2036
- 14.6.1. Level 1 (Driver Assistance)
- 14.6.2. Level 2 (Partial Autonomy)
- 14.6.3. Level 3 (Conditional Autonomy)
- 14.6.4. Level 4 (High Autonomy)
- 14.6.5. Level 5 (Full Autonomy)
- 14.7. Market Value Forecast, by End User, 2021-2036
- 14.7.1. OEMs
- 14.7.2. Suppliers
- 14.7.3. Fleet Operators
- 14.7.4. Aftermarket
- 14.8. Market Attractiveness Analysis
- 14.8.1. By Component
- 14.8.2. By Application
- 14.8.3. By Technology
- 14.8.4. By Vehicle Type
- 14.8.5. By Level of Automation
- 14.8.6. By End User
- 15. Canada AI in Automotive Market Analysis and Forecast
- 15.1. Introduction
- 15.1.1. Key Findings
- 15.2. Market Value Forecast, by Component, 2021-2036
- 15.2.1. Hardware
- 15.2.1.1. AI Chips / Processors (GPU, FPGA, SoC, ASICs)
- 15.2.1.2. Sensors (LiDAR, Radar, Cameras, Ultrasonic)
- 15.2.1.3. Connectivity Modules (5G/Edge)
- 15.2.1.4. Others
- 15.2.2. Software
- 15.2.2.1. AI Frameworks & Algorithms
- 15.2.2.2. Perception / Sensor Fusion
- 15.2.2.3. Real-Time Decision Engines
- 15.2.2.4. Others
- 15.2.3. Platforms
- 15.2.3.1. Automotive AI Platforms
- 15.2.3.2. AI Cloud Platforms
- 15.2.3.3. Autonomous Driving Software Stacks
- 15.2.3.4. Others
- 15.2.4. Services
- 15.2.4.1. Integration & Development Services
- 15.2.4.2. Security & Compliance
- 15.2.4.3. Maintenance & Support Services
- 15.2.4.4. Others
- 15.3. Market Value Forecast, by Application, 2021-2036
- 15.3.1. Advanced Driver Assistance Systems (ADAS)
- 15.3.2. Driver Monitoring & In-Cabin AI
- 15.3.3. Autonomous / Self-Driving Vehicles
- 15.3.4. Infotainment & Voice/AI Assistants
- 15.3.5. Fleet Management & Telematics
- 15.3.6. Others
- 15.4. Market Value Forecast, by Technology, 2021-2036
- 15.4.1. Machine Learning (ML)
- 15.4.2. Deep Learning
- 15.4.3. Computer Vision
- 15.4.4. Neural Networks
- 15.4.5. Cloud AI
- 15.4.6. Others
- 15.5. Market Value Forecast, by Vehicle Type, 2021-2036
- 15.5.1. Two & Three-Wheelers
- 15.5.2. Passenger Cars
- 15.5.3. Commercial Vehicles
- 15.5.4. Off-Highway Vehicles
- 15.6. Market Value Forecast, by Level of Automation, 2021-2036
- 15.6.1. Level 1 (Driver Assistance)
- 15.6.2. Level 2 (Partial Autonomy)
- 15.6.3. Level 3 (Conditional Autonomy)
- 15.6.4. Level 4 (High Autonomy)
- 15.6.5. Level 5 (Full Autonomy)
- 15.7. Market Value Forecast, by End User, 2021-2036
- 15.7.1. OEMs
- 15.7.2. Suppliers
- 15.7.3. Fleet Operators
- 15.7.4. Aftermarket
- 15.8. Market Attractiveness Analysis
- 15.8.1. By Component
- 15.8.2. By Application
- 15.8.3. By Technology
- 15.8.4. By Vehicle Type
- 15.8.5. By Level of Automation
- 15.8.6. By End User
- 16. Europe AI in Automotive Market Analysis and Forecast
- 16.1. Introduction
- 16.1.1. Key Findings
- 16.2. Market Value Forecast, by Component, 2021-2036
- 16.2.1. Hardware
- 16.2.1.1. AI Chips / Processors (GPU, FPGA, SoC, ASICs)
- 16.2.1.2. Sensors (LiDAR, Radar, Cameras, Ultrasonic)
- 16.2.1.3. Connectivity Modules (5G/Edge)
- 16.2.1.4. Others
- 16.2.2. Software
- 16.2.2.1. AI Frameworks & Algorithms
- 16.2.2.2. Perception / Sensor Fusion
- 16.2.2.3. Real-Time Decision Engines
- 16.2.2.4. Others
- 16.2.3. Platforms
- 16.2.3.1. Automotive AI Platforms
- 16.2.3.2. AI Cloud Platforms
- 16.2.3.3. Autonomous Driving Software Stacks
- 16.2.3.4. Others
- 16.2.4. Services
- 16.2.4.1. Integration & Development Services
- 16.2.4.2. Security & Compliance
- 16.2.4.3. Maintenance & Support Services
- 16.2.4.4. Others
- 16.3. Market Value Forecast, by Application, 2021-2036
- 16.3.1. Advanced Driver Assistance Systems (ADAS)
- 16.3.2. Driver Monitoring & In-Cabin AI
- 16.3.3. Autonomous / Self-Driving Vehicles
- 16.3.4. Infotainment & Voice/AI Assistants
- 16.3.5. Fleet Management & Telematics
- 16.3.6. Others
- 16.4. Market Value Forecast, by Technology, 2021-2036
- 16.4.1. Machine Learning (ML)
- 16.4.2. Deep Learning
- 16.4.3. Computer Vision
- 16.4.4. Neural Networks
- 16.4.5. Cloud AI
- 16.4.6. Others
- 16.5. Market Value Forecast, by Vehicle Type, 2021-2036
- 16.5.1. Two & Three-Wheelers
- 16.5.2. Passenger Cars
- 16.5.3. Commercial Vehicles
- 16.5.4. Off-Highway Vehicles
- 16.6. Market Value Forecast, by Level of Automation, 2021-2036
- 16.6.1. Level 1 (Driver Assistance)
- 16.6.2. Level 2 (Partial Autonomy)
- 16.6.3. Level 3 (Conditional Autonomy)
- 16.6.4. Level 4 (High Autonomy)
- 16.6.5. Level 5 (Full Autonomy)
- 16.7. Market Value Forecast, by End User, 2021-2036
- 16.7.1. OEMs
- 16.7.2. Suppliers
- 16.7.3. Fleet Operators
- 16.7.4. Aftermarket
- 16.8. Market Value Forecast, by Country/Sub-region, 2021-2036
- 16.8.1. Germany
- 16.8.2. U.K.
- 16.8.3. France
- 16.8.4. Italy
- 16.8.5. Spain
- 16.8.6. Switzerland
- 16.8.7. The Netherlands
- 16.8.8. Rest of Europe
- 16.9. Market Attractiveness Analysis
- 16.9.1. By Component
- 16.9.2. By Application
- 16.9.3. By Technology
- 16.9.4. By Vehicle Type
- 16.9.5. By Level of Automation
- 16.9.6. By End User
- 16.9.7. By Country/Sub-region
- 17. Germany AI in Automotive Market Analysis and Forecast
- 17.1. Introduction
- 17.1.1. Key Findings
- 17.2. Market Value Forecast, by Component, 2021-2036
- 17.2.1. Hardware
- 17.2.1.1. AI Chips / Processors (GPU, FPGA, SoC, ASICs)
- 17.2.1.2. Sensors (LiDAR, Radar, Cameras, Ultrasonic)
- 17.2.1.3. Connectivity Modules (5G/Edge)
- 17.2.1.4. Others
- 17.2.2. Software
- 17.2.2.1. AI Frameworks & Algorithms
- 17.2.2.2. Perception / Sensor Fusion
- 17.2.2.3. Real-Time Decision Engines
- 17.2.2.4. Others
- 17.2.3. Platforms
- 17.2.3.1. Automotive AI Platforms
- 17.2.3.2. AI Cloud Platforms
- 17.2.3.3. Autonomous Driving Software Stacks
- 17.2.3.4. Others
- 17.2.4. Services
- 17.2.4.1. Integration & Development Services
- 17.2.4.2. Security & Compliance
- 17.2.4.3. Maintenance & Support Services
- 17.2.4.4. Others
- 17.3. Market Value Forecast, by Application, 2021-2036
- 17.3.1. Advanced Driver Assistance Systems (ADAS)
- 17.3.2. Driver Monitoring & In-Cabin AI
- 17.3.3. Autonomous / Self-Driving Vehicles
- 17.3.4. Infotainment & Voice/AI Assistants
- 17.3.5. Fleet Management & Telematics
- 17.3.6. Others
- 17.4. Market Value Forecast, by Technology, 2021-2036
- 17.4.1. Machine Learning (ML)
- 17.4.2. Deep Learning
- 17.4.3. Computer Vision
- 17.4.4. Neural Networks
- 17.4.5. Cloud AI
- 17.4.6. Others
- 17.5. Market Value Forecast, by Vehicle Type, 2021-2036
- 17.5.1. Two & Three-Wheelers
- 17.5.2. Passenger Cars
- 17.5.3. Commercial Vehicles
- 17.5.4. Off-Highway Vehicles
- 17.6. Market Value Forecast, by Level of Automation, 2021-2036
- 17.6.1. Level 1 (Driver Assistance)
- 17.6.2. Level 2 (Partial Autonomy)
- 17.6.3. Level 3 (Conditional Autonomy)
- 17.6.4. Level 4 (High Autonomy)
- 17.6.5. Level 5 (Full Autonomy)
- 17.7. Market Value Forecast, by End User, 2021-2036
- 17.7.1. OEMs
- 17.7.2. Suppliers
- 17.7.3. Fleet Operators
- 17.7.4. Aftermarket
- 17.8. Market Attractiveness Analysis
- 17.8.1. By Component
- 17.8.2. By Application
- 17.8.3. By Technology
- 17.8.4. By Vehicle Type
- 17.8.5. By Level of Automation
- 17.8.6. By End User
- 18. U.K. AI in Automotive Market Analysis and Forecast
- 18.1. Introduction
- 18.1.1. Key Findings
- 18.2. Market Value Forecast, by Component, 2021-2036
- 18.2.1. Hardware
- 18.2.1.1. AI Chips / Processors (GPU, FPGA, SoC, ASICs)
- 18.2.1.2. Sensors (LiDAR, Radar, Cameras, Ultrasonic)
- 18.2.1.3. Connectivity Modules (5G/Edge)
- 18.2.1.4. Others
- 18.2.2. Software
- 18.2.2.1. AI Frameworks & Algorithms
- 18.2.2.2. Perception / Sensor Fusion
- 18.2.2.3. Real-Time Decision Engines
- 18.2.2.4. Others
- 18.2.3. Platforms
- 18.2.3.1. Automotive AI Platforms
- 18.2.3.2. AI Cloud Platforms
- 18.2.3.3. Autonomous Driving Software Stacks
- 18.2.3.4. Others
- 18.2.4. Services
- 18.2.4.1. Integration & Development Services
- 18.2.4.2. Security & Compliance
- 18.2.4.3. Maintenance & Support Services
- 18.2.4.4. Others
- 18.3. Market Value Forecast, by Application, 2021-2036
- 18.3.1. Advanced Driver Assistance Systems (ADAS)
- 18.3.2. Driver Monitoring & In-Cabin AI
- 18.3.3. Autonomous / Self-Driving Vehicles
- 18.3.4. Infotainment & Voice/AI Assistants
- 18.3.5. Fleet Management & Telematics
- 18.3.6. Others
- 18.4. Market Value Forecast, by Technology, 2021-2036
- 18.4.1. Machine Learning (ML)
- 18.4.2. Deep Learning
- 18.4.3. Computer Vision
- 18.4.4. Neural Networks
- 18.4.5. Cloud AI
- 18.4.6. Others
- 18.5. Market Value Forecast, by Vehicle Type, 2021-2036
- 18.5.1. Two & Three-Wheelers
- 18.5.2. Passenger Cars
- 18.5.3. Commercial Vehicles
- 18.5.4. Off-Highway Vehicles
- 18.6. Market Value Forecast, by Level of Automation, 2021-2036
- 18.6.1. Level 1 (Driver Assistance)
- 18.6.2. Level 2 (Partial Autonomy)
- 18.6.3. Level 3 (Conditional Autonomy)
- 18.6.4. Level 4 (High Autonomy)
- 18.6.5. Level 5 (Full Autonomy)
- 18.7. Market Value Forecast, by End User, 2021-2036
- 18.7.1. OEMs
- 18.7.2. Suppliers
- 18.7.3. Fleet Operators
- 18.7.4. Aftermarket
- 18.8. Market Attractiveness Analysis
- 18.8.1. By Component
- 18.8.2. By Application
- 18.8.3. By Technology
- 18.8.4. By Vehicle Type
- 18.8.5. By Level of Automation
- 18.8.6. By End User
- 19. France AI in Automotive Market Analysis and Forecast
- 19.1. Introduction
- 19.1.1. Key Findings
- 19.2. Market Value Forecast, by Component, 2021-2036
- 19.2.1. Hardware
- 19.2.1.1. AI Chips / Processors (GPU, FPGA, SoC, ASICs)
- 19.2.1.2. Sensors (LiDAR, Radar, Cameras, Ultrasonic)
- 19.2.1.3. Connectivity Modules (5G/Edge)
- 19.2.1.4. Others
- 19.2.2. Software
- 19.2.2.1. AI Frameworks & Algorithms
- 19.2.2.2. Perception / Sensor Fusion
- 19.2.2.3. Real-Time Decision Engines
- 19.2.2.4. Others
- 19.2.3. Platforms
- 19.2.3.1. Automotive AI Platforms
- 19.2.3.2. AI Cloud Platforms
- 19.2.3.3. Autonomous Driving Software Stacks
- 19.2.3.4. Others
- 19.2.4. Services
- 19.2.4.1. Integration & Development Services
- 19.2.4.2. Security & Compliance
- 19.2.4.3. Maintenance & Support Services
- 19.2.4.4. Others
- 19.3. Market Value Forecast, by Application, 2021-2036
- 19.3.1. Advanced Driver Assistance Systems (ADAS)
- 19.3.2. Driver Monitoring & In-Cabin AI
- 19.3.3. Autonomous / Self-Driving Vehicles
- 19.3.4. Infotainment & Voice/AI Assistants
- 19.3.5. Fleet Management & Telematics
- 19.3.6. Others
- 19.4. Market Value Forecast, by Technology, 2021-2036
- 19.4.1. Machine Learning (ML)
- 19.4.2. Deep Learning
- 19.4.3. Computer Vision
- 19.4.4. Neural Networks
- 19.4.5. Cloud AI
- 19.4.6. Others
- 19.5. Market Value Forecast, by Vehicle Type, 2021-2036
- 19.5.1. Two & Three-Wheelers
- 19.5.2. Passenger Cars
- 19.5.3. Commercial Vehicles
- 19.5.4. Off-Highway Vehicles
- 19.6. Market Value Forecast, by Level of Automation, 2021-2036
- 19.6.1. Level 1 (Driver Assistance)
- 19.6.2. Level 2 (Partial Autonomy)
- 19.6.3. Level 3 (Conditional Autonomy)
- 19.6.4. Level 4 (High Autonomy)
- 19.6.5. Level 5 (Full Autonomy)
- 19.7. Market Value Forecast, by End User, 2021-2036
- 19.7.1. OEMs
- 19.7.2. Suppliers
- 19.7.3. Fleet Operators
- 19.7.4. Aftermarket
- 19.8. Market Attractiveness Analysis
- 19.8.1. By Component
- 19.8.2. By Application
- 19.8.3. By Technology
- 19.8.4. By Vehicle Type
- 19.8.5. By Level of Automation
- 19.8.6. By End User
- 20. Italy AI in Automotive Market Analysis and Forecast
- 20.1. Introduction
- 20.1.1. Key Findings
- 20.2. Market Value Forecast, by Component, 2021-2036
- 20.2.1. Hardware
- 20.2.1.1. AI Chips / Processors (GPU, FPGA, SoC, ASICs)
- 20.2.1.2. Sensors (LiDAR, Radar, Cameras, Ultrasonic)
- 20.2.1.3. Connectivity Modules (5G/Edge)
- 20.2.1.4. Others
- 20.2.2. Software
- 20.2.2.1. AI Frameworks & Algorithms
- 20.2.2.2. Perception / Sensor Fusion
- 20.2.2.3. Real-Time Decision Engines
- 20.2.2.4. Others
- 20.2.3. Platforms
- 20.2.3.1. Automotive AI Platforms
- 20.2.3.2. AI Cloud Platforms
- 20.2.3.3. Autonomous Driving Software Stacks
- 20.2.3.4. Others
- 20.2.4. Services
- 20.2.4.1. Integration & Development Services
- 20.2.4.2. Security & Compliance
- 20.2.4.3. Maintenance & Support Services
- 20.2.4.4. Others
- 20.3. Market Value Forecast, by Application, 2021-2036
- 20.3.1. Advanced Driver Assistance Systems (ADAS)
- 20.3.2. Driver Monitoring & In-Cabin AI
- 20.3.3. Autonomous / Self-Driving Vehicles
- 20.3.4. Infotainment & Voice/AI Assistants
- 20.3.5. Fleet Management & Telematics
- 20.3.6. Others
- 20.4. Market Value Forecast, by Technology, 2021-2036
- 20.4.1. Machine Learning (ML)
- 20.4.2. Deep Learning
- 20.4.3. Computer Vision
- 20.4.4. Neural Networks
- 20.4.5. Cloud AI
- 20.4.6. Others
- 20.5. Market Value Forecast, by Vehicle Type, 2021-2036
- 20.5.1. Two & Three-Wheelers
- 20.5.2. Passenger Cars
- 20.5.3. Commercial Vehicles
- 20.5.4. Off-Highway Vehicles
- 20.6. Market Value Forecast, by Level of Automation, 2021-2036
- 20.6.1. Level 1 (Driver Assistance)
- 20.6.2. Level 2 (Partial Autonomy)
- 20.6.3. Level 3 (Conditional Autonomy)
- 20.6.4. Level 4 (High Autonomy)
- 20.6.5. Level 5 (Full Autonomy)
- 20.7. Market Value Forecast, by End User, 2021-2036
- 20.7.1. OEMs
- 20.7.2. Suppliers
- 20.7.3. Fleet Operators
- 20.7.4. Aftermarket
- 20.8. Market Attractiveness Analysis
- 20.8.1. By Component
- 20.8.2. By Application
- 20.8.3. By Technology
- 20.8.4. By Vehicle Type
- 20.8.5. By Level of Automation
- 20.8.6. By End User
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.


