Edge AI Data Center Infrastructure Market Forecasts to 2034 – Global Analysis By Infrastructure Component (Networking Infrastructure, Storage Infrastructure, Power & Cooling Infrastructure and Other Infrastructure Components), AI Capability, Edge Data Cen
Description
According to Stratistics MRC, the Global Edge AI Data Center Infrastructure Market is accounted for $36.87 billion in 2026 and is expected to reach $231.29 billion by 2034 growing at a CAGR of 25.8% during the forecast period. Edge AI Data Center Infrastructure refers to the distributed computing architecture that deploys AI-enabled data center resources closer to data sources and end users at the network edge. It integrates compact servers, GPUs, AI accelerators, storage, networking, and edge-optimized software to process, analyze, and infer data locally in real time. This infrastructure minimizes latency, reduces bandwidth usage, enhances data privacy, and improves reliability by limiting dependence on centralized cloud data centers. Edge AI data centers support use cases such as autonomous systems, smart cities, industrial automation, healthcare monitoring, and 5G-enabled applications, enabling fast, intelligent decision-making at the point of data generation.
Market Dynamics:
Driver:
Rising demand for real-time AI processing
Enterprises increasingly rely on low-latency AI applications such as autonomous systems, predictive analytics, and IoT-driven insights. Traditional centralized data centers struggle to meet latency requirements, creating strong demand for edge-based compute. AI workloads in healthcare, automotive, and financial services amplify the need for real-time decision-making. Hyperscale and enterprise operators are investing in edge AI infrastructure to support mission-critical applications. Consequently, real-time AI processing acts as a primary driver for market growth.
Restraint:
Limited skilled edge AI workforce
Implementing advanced compute and analytics systems requires expertise in AI, machine learning, and distributed architectures. Limited availability of trained personnel delays projects and increases costs. Smaller enterprises face acute challenges in attracting and retaining talent. Workforce gaps also raise risks of mismanagement during critical deployment phases. As a result, the shortage of skilled edge AI professionals remains a key restraint on adoption.
Opportunity:
Expansion in emerging global markets
Rising internet penetration and mobile-first economies in Asia, Africa, and Latin America fuel demand for localized compute. Governments are investing heavily in digital infrastructure to support smart cities, 5G, and IoT ecosystems. Enterprises in these regions prioritize cost-effective and scalable AI solutions to meet growing consumer demand. Startups and SMEs contribute significantly to adoption by deploying edge AI for real-time services. Therefore, emerging markets act as a catalyst for global expansion of edge AI infrastructure.
Threat:
Data security and regulatory compliance risks
Distributed architectures increase vulnerability to cyberattacks and unauthorized access. Regulatory frameworks governing data privacy and sovereignty complicate deployment across multiple regions. Enterprises face reputational and financial damage from breaches or compliance failures. Rapidly evolving regulations require continuous adaptation of infrastructure strategies. Collectively, security and compliance risks remain a major threat to market adoption.
Covid-19 Impact:
The Covid-19 pandemic accelerated digital adoption, boosting demand for edge AI infrastructure. Remote work, e-commerce, and online collaboration platforms drove unprecedented traffic volumes. Enterprises prioritized edge deployments to ensure resilience and low-latency services during disruptions. However, supply chain delays and workforce restrictions slowed down hardware availability and project timelines. Despite short-term setbacks, long-term demand surged as organizations embraced automation and AI-driven insights. Overall, Covid-19 acted as both a disruptor and a catalyst for edge AI infrastructure growth.
The compute infrastructure (CPUs, GPUs, AI Accelerators) segment is expected to be the largest during the forecast period
The compute infrastructure (CPUs, GPUs, AI Accelerators) segment is expected to account for the largest market share during the forecast period due to its critical role in enabling real-time AI processing. CPUs provide general-purpose computing, while GPUs and AI accelerators deliver high-performance parallel processing for complex workloads. Enterprises rely on these components to support applications in healthcare, finance, automotive, and IoT ecosystems. Rising adoption of AI-driven workloads intensifies demand for advanced compute infrastructure across hyperscale and edge facilities. Continuous innovation in chip design enhances scalability, energy efficiency, and performance.
The real-time analytics infrastructure segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the real-time analytics infrastructure segment is predicted to witness the highest growth rate as enterprises prioritize actionable insights from massive data streams. Real-time analytics enables anomaly detection, predictive modeling, and instant decision-making across industries. The proliferation of IoT devices and 5G networks amplifies reliance on edge-based analytics systems. AI-driven platforms enhance resilience by supporting mission-critical applications such as fraud detection, autonomous systems, and healthcare diagnostics. Enterprises increasingly invest in analytics infrastructure to reduce latency and improve customer experiences.
Region with largest share:
During the forecast period, the North America region is expected to hold the largest market share owing to its mature data center ecosystem and strong AI adoption. The presence of hyperscale operators such as Amazon Web Services, Microsoft Azure, Google Cloud, and Meta drives concentrated investment in edge AI infrastructure. Enterprises prioritize deployments to meet stringent compliance, latency, and security requirements. Strong regulatory frameworks and advanced digital infrastructure reinforce adoption of AI-driven systems. The region benefits from high internet penetration and widespread digital transformation initiatives across industries. Investments in AI innovation, partnerships with technology providers, and integration of renewable energy further strengthen market leadership.
Region with highest CAGR:
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR due to explosive digital growth and infrastructure investments. Rising internet penetration and mobile-first economies fuel hyperscale and edge data center expansion. Governments in China, India, and Southeast Asia are investing heavily in AI, 5G, and IoT ecosystems. Rapid adoption of smart city initiatives and industrial automation intensifies reliance on localized compute and analytics. Subsidies and incentives for AI innovation accelerate adoption across enterprises and startups. Emerging SMEs also contribute significantly to rising demand for cost-effective edge AI solutions.
Key players in the market
Some of the key players in Edge AI Data Center Infrastructure Market include NVIDIA Corporation, Intel Corporation, Advanced Micro Devices, Inc. (AMD), Qualcomm Technologies, Inc., Google LLC, Microsoft Corporation, Amazon Web Services, Inc. (AWS), Huawei Technologies Co., Ltd., Dell Technologies Inc., Hewlett Packard Enterprise (HPE), Cisco Systems, Inc., IBM Corporation, Oracle Corporation, Equinix, Inc. and EdgeConneX, Inc.
Key Developments:
In March 2025, NVIDIA announced a major partnership with ServiceNow to integrate NVIDIA's enterprise AI software and DGX Cloud AI supercomputing with ServiceNow's Now Platform, aiming to accelerate generative AI adoption for enterprise workflows directly from data centers to the edge.
In September 2024, Intel and Dell entered a strategic collaboration to deliver enterprise-scale AI solutions, integrating Intel's Gaudi accelerators and Xeon processors with Dell's PowerEdge servers and software to simplify generative AI deployment from edge to core to cloud.
Infrastructure Components Covered:
• Compute Infrastructure (CPUs, GPUs, AI Accelerators)
• Networking Infrastructure
• Storage Infrastructure
• Power & Cooling Infrastructure
• Other Infrastructure Components
Types Covered:
• AI Model Inference Infrastructure
• Real-Time Analytics Infrastructure
• Computer Vision Processing Infrastructure
• Natural Language Processing Infrastructure
• Other AI Capabilities
Service Types Covered:
• Micro Edge Data Centers
• Regional Edge Data Centers
• Mobile / Portable Edge Data Centers
• Other Edge Data Center Types
Deployment Models Covered:
• On-Premise
• Cloud-Based
End Users Covered:
• IT & Telecommunications
• Manufacturing & Industrial
• Transportation & Logistics
• Retail & E-Commerce
• Healthcare & Life Sciences
• Energy & Utilities
• Government & Defense
• Other End Users
Regions Covered:
• North America
United States
Canada
Mexico
• Europe
United Kingdom
Germany
France
Italy
Spain
Netherlands
Belgium
Sweden
Switzerland
Poland
Rest of Europe
• Asia Pacific
China
Japan
India
South Korea
Australia
Indonesia
Thailand
Malaysia
Singapore
Vietnam
Rest of Asia Pacific
• South America
Brazil
Argentina
Colombia
Chile
Peru
Rest of South America
• Rest of the World (RoW)
Middle East
Saudi Arabia
United Arab Emirates
Qatar
Israel
Rest of Middle East
Africa
South Africa
Egypt
Morocco
Rest of Africa
What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2023, 2024, 2025, 2026, 2027, 2028, 2030, 3032 and 2034
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements
Market Dynamics:
Driver:
Rising demand for real-time AI processing
Enterprises increasingly rely on low-latency AI applications such as autonomous systems, predictive analytics, and IoT-driven insights. Traditional centralized data centers struggle to meet latency requirements, creating strong demand for edge-based compute. AI workloads in healthcare, automotive, and financial services amplify the need for real-time decision-making. Hyperscale and enterprise operators are investing in edge AI infrastructure to support mission-critical applications. Consequently, real-time AI processing acts as a primary driver for market growth.
Restraint:
Limited skilled edge AI workforce
Implementing advanced compute and analytics systems requires expertise in AI, machine learning, and distributed architectures. Limited availability of trained personnel delays projects and increases costs. Smaller enterprises face acute challenges in attracting and retaining talent. Workforce gaps also raise risks of mismanagement during critical deployment phases. As a result, the shortage of skilled edge AI professionals remains a key restraint on adoption.
Opportunity:
Expansion in emerging global markets
Rising internet penetration and mobile-first economies in Asia, Africa, and Latin America fuel demand for localized compute. Governments are investing heavily in digital infrastructure to support smart cities, 5G, and IoT ecosystems. Enterprises in these regions prioritize cost-effective and scalable AI solutions to meet growing consumer demand. Startups and SMEs contribute significantly to adoption by deploying edge AI for real-time services. Therefore, emerging markets act as a catalyst for global expansion of edge AI infrastructure.
Threat:
Data security and regulatory compliance risks
Distributed architectures increase vulnerability to cyberattacks and unauthorized access. Regulatory frameworks governing data privacy and sovereignty complicate deployment across multiple regions. Enterprises face reputational and financial damage from breaches or compliance failures. Rapidly evolving regulations require continuous adaptation of infrastructure strategies. Collectively, security and compliance risks remain a major threat to market adoption.
Covid-19 Impact:
The Covid-19 pandemic accelerated digital adoption, boosting demand for edge AI infrastructure. Remote work, e-commerce, and online collaboration platforms drove unprecedented traffic volumes. Enterprises prioritized edge deployments to ensure resilience and low-latency services during disruptions. However, supply chain delays and workforce restrictions slowed down hardware availability and project timelines. Despite short-term setbacks, long-term demand surged as organizations embraced automation and AI-driven insights. Overall, Covid-19 acted as both a disruptor and a catalyst for edge AI infrastructure growth.
The compute infrastructure (CPUs, GPUs, AI Accelerators) segment is expected to be the largest during the forecast period
The compute infrastructure (CPUs, GPUs, AI Accelerators) segment is expected to account for the largest market share during the forecast period due to its critical role in enabling real-time AI processing. CPUs provide general-purpose computing, while GPUs and AI accelerators deliver high-performance parallel processing for complex workloads. Enterprises rely on these components to support applications in healthcare, finance, automotive, and IoT ecosystems. Rising adoption of AI-driven workloads intensifies demand for advanced compute infrastructure across hyperscale and edge facilities. Continuous innovation in chip design enhances scalability, energy efficiency, and performance.
The real-time analytics infrastructure segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the real-time analytics infrastructure segment is predicted to witness the highest growth rate as enterprises prioritize actionable insights from massive data streams. Real-time analytics enables anomaly detection, predictive modeling, and instant decision-making across industries. The proliferation of IoT devices and 5G networks amplifies reliance on edge-based analytics systems. AI-driven platforms enhance resilience by supporting mission-critical applications such as fraud detection, autonomous systems, and healthcare diagnostics. Enterprises increasingly invest in analytics infrastructure to reduce latency and improve customer experiences.
Region with largest share:
During the forecast period, the North America region is expected to hold the largest market share owing to its mature data center ecosystem and strong AI adoption. The presence of hyperscale operators such as Amazon Web Services, Microsoft Azure, Google Cloud, and Meta drives concentrated investment in edge AI infrastructure. Enterprises prioritize deployments to meet stringent compliance, latency, and security requirements. Strong regulatory frameworks and advanced digital infrastructure reinforce adoption of AI-driven systems. The region benefits from high internet penetration and widespread digital transformation initiatives across industries. Investments in AI innovation, partnerships with technology providers, and integration of renewable energy further strengthen market leadership.
Region with highest CAGR:
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR due to explosive digital growth and infrastructure investments. Rising internet penetration and mobile-first economies fuel hyperscale and edge data center expansion. Governments in China, India, and Southeast Asia are investing heavily in AI, 5G, and IoT ecosystems. Rapid adoption of smart city initiatives and industrial automation intensifies reliance on localized compute and analytics. Subsidies and incentives for AI innovation accelerate adoption across enterprises and startups. Emerging SMEs also contribute significantly to rising demand for cost-effective edge AI solutions.
Key players in the market
Some of the key players in Edge AI Data Center Infrastructure Market include NVIDIA Corporation, Intel Corporation, Advanced Micro Devices, Inc. (AMD), Qualcomm Technologies, Inc., Google LLC, Microsoft Corporation, Amazon Web Services, Inc. (AWS), Huawei Technologies Co., Ltd., Dell Technologies Inc., Hewlett Packard Enterprise (HPE), Cisco Systems, Inc., IBM Corporation, Oracle Corporation, Equinix, Inc. and EdgeConneX, Inc.
Key Developments:
In March 2025, NVIDIA announced a major partnership with ServiceNow to integrate NVIDIA's enterprise AI software and DGX Cloud AI supercomputing with ServiceNow's Now Platform, aiming to accelerate generative AI adoption for enterprise workflows directly from data centers to the edge.
In September 2024, Intel and Dell entered a strategic collaboration to deliver enterprise-scale AI solutions, integrating Intel's Gaudi accelerators and Xeon processors with Dell's PowerEdge servers and software to simplify generative AI deployment from edge to core to cloud.
Infrastructure Components Covered:
• Compute Infrastructure (CPUs, GPUs, AI Accelerators)
• Networking Infrastructure
• Storage Infrastructure
• Power & Cooling Infrastructure
• Other Infrastructure Components
Types Covered:
• AI Model Inference Infrastructure
• Real-Time Analytics Infrastructure
• Computer Vision Processing Infrastructure
• Natural Language Processing Infrastructure
• Other AI Capabilities
Service Types Covered:
• Micro Edge Data Centers
• Regional Edge Data Centers
• Mobile / Portable Edge Data Centers
• Other Edge Data Center Types
Deployment Models Covered:
• On-Premise
• Cloud-Based
End Users Covered:
• IT & Telecommunications
• Manufacturing & Industrial
• Transportation & Logistics
• Retail & E-Commerce
• Healthcare & Life Sciences
• Energy & Utilities
• Government & Defense
• Other End Users
Regions Covered:
• North America
United States
Canada
Mexico
• Europe
United Kingdom
Germany
France
Italy
Spain
Netherlands
Belgium
Sweden
Switzerland
Poland
Rest of Europe
• Asia Pacific
China
Japan
India
South Korea
Australia
Indonesia
Thailand
Malaysia
Singapore
Vietnam
Rest of Asia Pacific
• South America
Brazil
Argentina
Colombia
Chile
Peru
Rest of South America
• Rest of the World (RoW)
Middle East
Saudi Arabia
United Arab Emirates
Qatar
Israel
Rest of Middle East
Africa
South Africa
Egypt
Morocco
Rest of Africa
What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2023, 2024, 2025, 2026, 2027, 2028, 2030, 3032 and 2034
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements
Table of Contents
200 Pages
- 1 Executive Summary
- 1.1 Market Snapshot and Key Highlights
- 1.2 Growth Drivers, Challenges, and Opportunities
- 1.3 Competitive Landscape Overview
- 1.4 Strategic Insights and Recommendations
- 2 Research Framework
- 2.1 Study Objectives and Scope
- 2.2 Stakeholder Analysis
- 2.3 Research Assumptions and Limitations
- 2.4 Research Methodology
- 2.4.1 Data Collection (Primary and Secondary)
- 2.4.2 Data Modeling and Estimation Techniques
- 2.4.3 Data Validation and Triangulation
- 2.4.4 Analytical and Forecasting Approach
- 3 Market Dynamics and Trend Analysis
- 3.1 Market Definition and Structure
- 3.2 Key Market Drivers
- 3.3 Market Restraints and Challenges
- 3.4 Growth Opportunities and Investment Hotspots
- 3.5 Industry Threats and Risk Assessment
- 3.6 Technology and Innovation Landscape
- 3.7 Emerging and High-Growth Markets
- 3.8 Regulatory and Policy Environment
- 3.9 Impact of COVID-19 and Recovery Outlook
- 4 Competitive and Strategic Assessment
- 4.1 Porter's Five Forces Analysis
- 4.1.1 Supplier Bargaining Power
- 4.1.2 Buyer Bargaining Power
- 4.1.3 Threat of Substitutes
- 4.1.4 Threat of New Entrants
- 4.1.5 Competitive Rivalry
- 4.2 Market Share Analysis of Key Players
- 4.3 Product Benchmarking and Performance Comparison
- 5 Global Edge AI Data Center Infrastructure Market, By Infrastructure Component
- 5.1 Compute Infrastructure (CPUs, GPUs, AI Accelerators)
- 5.2 Networking Infrastructure
- 5.3 Storage Infrastructure
- 5.4 Power & Cooling Infrastructure
- 5.5 Other Infrastructure Components
- 6 Global Edge AI Data Center Infrastructure Market, By AI Capability
- 6.1 AI Model Inference Infrastructure
- 6.2 Real-Time Analytics Infrastructure
- 6.3 Computer Vision Processing Infrastructure
- 6.4 Natural Language Processing Infrastructure
- 6.5 Other AI Capabilities
- 7 Global Edge AI Data Center Infrastructure Market, By Edge Data Center Type
- 7.1 Micro Edge Data Centers
- 7.2 Regional Edge Data Centers
- 7.3 Mobile / Portable Edge Data Centers
- 7.4 Other Edge Data Center Types
- 8 Global Edge AI Data Center Infrastructure Market, By Deployment Model
- 8.1 On-Premise
- 8.2 Cloud-Based
- 9 Global Edge AI Data Center Infrastructure Market, By End User
- 9.1 IT & Telecommunications
- 9.2 Manufacturing & Industrial
- 9.3 Transportation & Logistics
- 9.4 Retail & E-Commerce
- 9.5 Healthcare & Life Sciences
- 9.6 Energy & Utilities
- 9.7 Government & Defense
- 9.8 Other End Users
- 10 Global Edge AI Data Center Infrastructure Market, By Geography
- 10.1 North America
- 10.1.1 United States
- 10.1.2 Canada
- 10.1.3 Mexico
- 10.2 Europe
- 10.2.1 United Kingdom
- 10.2.2 Germany
- 10.2.3 France
- 10.2.4 Italy
- 10.2.5 Spain
- 10.2.6 Netherlands
- 10.2.7 Belgium
- 10.2.8 Sweden
- 10.2.9 Switzerland
- 10.2.10 Poland
- 10.2.10 Rest of Europe
- 10.3 Asia Pacific
- 10.3.1 China
- 10.3.2 Japan
- 10.3.3 India
- 10.3.4 South Korea
- 10.3.5 Australia
- 10.3.6 Indonesia
- 10.3.7 Thailand
- 10.3.8 Malaysia
- 10.3.9 Singapore
- 10.3.10 Vietnam
- 10.3.10 Rest of Asia Pacific
- 10.4 South America
- 10.4.1 Brazil
- 10.4.2 Argentina
- 10.4.3 Colombia
- 10.4.4 Chile
- 10.4.5 Peru
- 10.4.6 Rest of South America
- 10.5 Rest of the World (RoW)
- 10.5.1 Middle East
- 10.5.1.1 Saudi Arabia
- 10.5.1.2 United Arab Emirates
- 10.5.1.3 Qatar
- 10.5.1.4 Israel
- 10.5.1.5 Rest of Middle East
- 10.5.2 Africa
- 10.5.2.1 South Africa
- 10.5.2.2 Egypt
- 10.5.2.3 Morocco
- 10.5.2.4 Rest of Africa
- 11 Strategic Market Intelligence
- 11.1 Industry Value Network and Supply Chain Assessment
- 11.2 White-Space and Opportunity Mapping
- 11.3 Product Evolution and Market Life Cycle Analysis
- 11.4 Channel, Distributor, and Go-to-Market Assessment
- 12 Industry Developments and Strategic Initiatives
- 12.1 Mergers and Acquisitions
- 12.2 Partnerships, Alliances, and Joint Ventures
- 12.3 New Product Launches and Certifications
- 12.4 Capacity Expansion and Investments
- 12.5 Other Strategic Initiatives
- 13 Company Profiles
- 13.1 NVIDIA Corporation
- 13.2 Intel Corporation
- 13.3 Advanced Micro Devices, Inc. (AMD)
- 13.4 Qualcomm Technologies, Inc.
- 13.5 Google LLC
- 13.6 Microsoft Corporation
- 13.7 Amazon Web Services, Inc. (AWS)
- 13.8 Huawei Technologies Co., Ltd.
- 13.9 Dell Technologies Inc.
- 13.10 Hewlett Packard Enterprise (HPE)
- 13.11 Cisco Systems, Inc.
- 13.12 IBM Corporation
- 13.13 Oracle Corporation
- 13.14 Equinix, Inc.
- 13.15 EdgeConneX, Inc.
- List of Tables
- Table 1 Global Edge AI Data Center Infrastructure Market Outlook, By Region (2023-2034) ($MN)
- Table 2 Global Edge AI Data Center Infrastructure Market Outlook, By Infrastructure Component (2023-2034) ($MN)
- Table 3 Global Edge AI Data Center Infrastructure Market Outlook, By Compute Infrastructure (CPUs, GPUs, AI Accelerators) (2023-2034) ($MN)
- Table 4 Global Edge AI Data Center Infrastructure Market Outlook, By Networking Infrastructure (2023-2034) ($MN)
- Table 5 Global Edge AI Data Center Infrastructure Market Outlook, By Storage Infrastructure (2023-2034) ($MN)
- Table 6 Global Edge AI Data Center Infrastructure Market Outlook, By Power & Cooling Infrastructure (2023-2034) ($MN)
- Table 7 Global Edge AI Data Center Infrastructure Market Outlook, By Other Infrastructure Components (2023-2034) ($MN)
- Table 8 Global Edge AI Data Center Infrastructure Market Outlook, By AI Capability (2023-2034) ($MN)
- Table 9 Global Edge AI Data Center Infrastructure Market Outlook, By AI Model Inference Infrastructure (2023-2034) ($MN)
- Table 10 Global Edge AI Data Center Infrastructure Market Outlook, By Real-Time Analytics Infrastructure (2023-2034) ($MN)
- Table 11 Global Edge AI Data Center Infrastructure Market Outlook, By Computer Vision Processing Infrastructure (2023-2034) ($MN)
- Table 12 Global Edge AI Data Center Infrastructure Market Outlook, By Natural Language Processing Infrastructure (2023-2034) ($MN)
- Table 13 Global Edge AI Data Center Infrastructure Market Outlook, By Other AI Capabilities (2023-2034) ($MN)
- Table 14 Global Edge AI Data Center Infrastructure Market Outlook, By Edge Data Center Type (2023-2034) ($MN)
- Table 15 Global Edge AI Data Center Infrastructure Market Outlook, By Micro Edge Data Centers (2023-2034) ($MN)
- Table 16 Global Edge AI Data Center Infrastructure Market Outlook, By Regional Edge Data Centers (2023-2034) ($MN)
- Table 17 Global Edge AI Data Center Infrastructure Market Outlook, By Mobile / Portable Edge Data Centers (2023-2034) ($MN)
- Table 18 Global Edge AI Data Center Infrastructure Market Outlook, By Other Edge Data Center Types (2023-2034) ($MN)
- Table 19 Global Edge AI Data Center Infrastructure Market Outlook, By Deployment Model (2023-2034) ($MN)
- Table 20 Global Edge AI Data Center Infrastructure Market Outlook, By On-Premise (2023-2034) ($MN)
- Table 21 Global Edge AI Data Center Infrastructure Market Outlook, By Cloud-Based (2023-2034) ($MN)
- Table 22 Global Edge AI Data Center Infrastructure Market Outlook, By End User (2023-2034) ($MN)
- Table 23 Global Edge AI Data Center Infrastructure Market Outlook, By IT & Telecommunications (2023-2034) ($MN)
- Table 24 Global Edge AI Data Center Infrastructure Market Outlook, By Manufacturing & Industrial (2023-2034) ($MN)
- Table 25 Global Edge AI Data Center Infrastructure Market Outlook, By Transportation & Logistics (2023-2034) ($MN)
- Table 26 Global Edge AI Data Center Infrastructure Market Outlook, By Retail & E-Commerce (2023-2034) ($MN)
- Table 27 Global Edge AI Data Center Infrastructure Market Outlook, By Healthcare & Life Sciences (2023-2034) ($MN)
- Table 28 Global Edge AI Data Center Infrastructure Market Outlook, By Energy & Utilities (2023-2034) ($MN)
- Table 29 Global Edge AI Data Center Infrastructure Market Outlook, By Government & Defense (2023-2034) ($MN)
- Table 30 Global Edge AI Data Center Infrastructure Market Outlook, By Other End Users (2023-2034) ($MN)
- Note: Tables for North America, Europe, APAC, South America, and Rest of the World (RoW) are also represented in the same manner as above.
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

