Agentic AI in Fintech Market Forecasts to 2032 – Global Analysis By Functionality (Predictive and Prescriptive Analytics, Automated Decision-making Systems, Conversational and Advisory Agents and Autonomous Financial Agents), Deployment Mode, Organization
Description
According to Stratistics MRC, the Global Agentic AI in Fintech Market is accounted for $9.9 billion in 2025 and is expected to reach $124.8 billion by 2032 growing at a CAGR of 43.6% during the forecast period. Agentic AI in fintech refers to artificial intelligence systems capable of autonomous decision-making and proactive financial actions without constant human input. Unlike traditional AI, which merely analyzes data, agentic AI acts with intent—negotiating, optimizing, and executing tasks such as fraud prevention, investment strategies, credit risk assessment, and personalized banking services. These AI agents operate with adaptive reasoning, continuously learning from outcomes to improve performance. In fintech, this autonomy enables real-time financial insights, predictive modeling, and enhanced customer engagement. By integrating agentic AI, financial institutions gain smarter, self-directed systems that drive efficiency, accuracy, and strategic innovation across digital finance operations.
Market Dynamics:
Driver:
Automation of Financial Operations
Automation of financial operations is a key driver of the Agentic AI in Fintech Market. Agentic AI systems streamline complex tasks such as fraud detection, credit scoring, and portfolio management with minimal human intervention. These autonomous agents enhance speed, accuracy, and scalability, reducing operational costs and improving decision-making. Financial institutions benefit from real-time insights and adaptive learning, enabling smarter workflows and personalized services. As digital finance evolves, automation powered by agentic AI becomes essential for competitive advantage and operational excellence.
Restraint:
High Implementation Costs
High implementation costs significantly hinder the adoption of agentic AI in the fintech market. Developing, integrating, and maintaining advanced AI systems demand substantial investment in infrastructure, skilled personnel, and continuous model training. Smaller financial institutions struggle to justify such expenses, slowing market democratization. These costs also raise barriers to experimentation and innovation, limiting scalability and reducing the overall pace of AI-driven transformation across the financial ecosystem.
Opportunity:
Rising Digital Transformation
Rising digital transformation presents a major opportunity for the Agentic AI in Fintech Market. Financial institutions are rapidly digitizing services to meet evolving customer expectations and regulatory demands. Agentic AI enhances this shift by enabling proactive, intelligent systems that personalize experiences, optimize operations, and predict market trends. Integration with cloud computing, IoT, and blockchain further expands capabilities. As fintech ecosystems grow, agentic AI becomes a cornerstone of innovation, driving smarter, faster, and more secure financial services across global markets.
Threat:
Data Privacy & Security Risks
Data privacy and security risks pose a major hindrance to the growth of agentic AI in the fintech market. Handling sensitive financial data increases vulnerability to breaches, misuse, and regulatory penalties. Concerns over unauthorized access and compliance with stringent data protection laws discourage adoption. These risks erode customer trust, delay innovation, and compel firms to invest heavily in cybersecurity, further straining operational budgets and slowing large-scale AI deployment.
Covid-19 Impact:
The COVID-19 pandemic accelerated the adoption of Agentic AI in fintech by highlighting the need for resilient, automated systems. Remote operations and digital banking surged, prompting institutions to deploy AI agents for fraud detection, customer support, and financial planning. The crisis underscored the value of real-time insights and adaptive technologies. While initial disruptions affected implementation timelines, post-pandemic recovery has fueled investment in autonomous AI. The pandemic reshaped fintech priorities, positioning agentic AI as a vital tool for future-proofing financial services.
The algorithmic trading segment is expected to be the largest during the forecast period
The algorithmic trading segment is expected to account for the largest market share during the forecast period, as Agentic AI enhances trading strategies by autonomously analyzing market data, executing trades, and adapting to real-time conditions. These systems outperform traditional models by learning from outcomes and optimizing performance. Financial firms leverage agentic AI to reduce latency, manage risk, and capitalize on market opportunities. As algorithmic trading becomes more sophisticated, its dominance in fintech AI applications continues to grow.
The banking segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the banking segment is predicted to witness the highest growth rate, as Agentic AI transforms banking by automating customer service, personalizing financial advice, and streamlining back-office operations. These intelligent agents enable real-time fraud detection, credit assessments, and transaction monitoring, enhancing security and efficiency. Banks are investing in AI-driven platforms to improve customer engagement and operational agility. As digital banking expands, agentic AI becomes integral to delivering seamless, proactive services, driving rapid growth and innovation in the sector.
Region with largest share:
During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to region’s booming fintech ecosystem, large unbanked population, and government support for digital innovation drive adoption. Countries like China, India, and Singapore are leading in AI integration across financial services. Rapid mobile penetration and tech-savvy consumers’ further fuels demand. Financial institutions are deploying agentic AI to enhance customer experience, reduce fraud, and expand access. Asia Pacific’s dynamic market conditions make it a global leader in fintech AI.
Region with highest CAGR:
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to region’s advanced financial infrastructure, strong investment landscape, and early adoption of AI technologies support rapid growth. U.S. and Canadian firms are leveraging agentic AI for personalized banking, predictive analytics, and autonomous trading. Regulatory clarity and innovation hubs accelerate development. As digital transformation intensifies, North America’s focus on intelligent automation and data-driven finance positions it for leadership in agentic AI adoption.
Key players in the market
Some of the key players in Agentic AI in Fintech Market include OpenAI, Microsoft Corporation, Alphabet Inc. (Google), Anthropic, NVIDIA Corporation, IBM Corporation, Amazon Web Services (AWS), AppZen, Stripe, Inc., Visa Inc., Mastercard Incorporated, PayPal Holdings, Inc., JPMorgan Chase & Co., Wells Fargo & Company, and UiPath, Inc.
Key Developments:
In October 2025, Microsoft Corporation has deepened its partnership with OpenAI through a definitive agreement that values its investment at approximately US$135 billion, giving Microsoft a 27 % ownership stake in the newly recapitalised OpenAI Group PBC and extending its intellectual‐property rights through 2032 while validating any artificial general intelligence (AGI) via an independent expert panel.
In March 2025, Microsoft Corporation has strengthened its strategic partnership with the Government of Kuwait, planning to launch an AI-powered Azure region to accelerate national digital transformation, drive economic growth, foster AI innovation and prepare the workforce for the future.
Functionalities Covered:
• Predictive and Prescriptive Analytics
• Automated Decision-making Systems
• Conversational and Advisory Agents
• Autonomous Financial Agents
Deployment Modes Covered:
• Cloud-based
• On-premises
• Hybrid
Organization Sizes Covered:
• Large Enterprises
• Small and Medium Enterprises (SMEs)
Technologies Covered:
• Machine Learning and Deep Learning
• Natural Language Processing (NLP)
• Reinforcement Learning
• Multi-Agent Systems
• Generative AI and LLMs
• Predictive Analytics
• RPA and Cognitive Automation
Applications Covered:
• Fraud Detection and Risk Management
• Customer Service Automation
• Credit Scoring and Underwriting
• Algorithmic Trading
• Wealth and Asset Management
• Compliance and Regulatory Automation
• Financial Advisory and Decision Support
End Users Covered:
• Banking
• Insurance
• Investment Firms
• Payment Gateways
• Credit Bureaus
• Fintech Startups
• Regulatory Bodies
Regions Covered:
• North AmericaUSCanadaMexico
• EuropeGermanyUKItalyFranceSpainRest of Europe
• Asia PacificJapan China India Australia New ZealandSouth KoreaRest of Asia Pacific
• South AmericaArgentinaBrazilChileRest of South America
• Middle East & Africa Saudi ArabiaUAEQatarSouth AfricaRest of Middle East & Africa
What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements
Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances
Market Dynamics:
Driver:
Automation of Financial Operations
Automation of financial operations is a key driver of the Agentic AI in Fintech Market. Agentic AI systems streamline complex tasks such as fraud detection, credit scoring, and portfolio management with minimal human intervention. These autonomous agents enhance speed, accuracy, and scalability, reducing operational costs and improving decision-making. Financial institutions benefit from real-time insights and adaptive learning, enabling smarter workflows and personalized services. As digital finance evolves, automation powered by agentic AI becomes essential for competitive advantage and operational excellence.
Restraint:
High Implementation Costs
High implementation costs significantly hinder the adoption of agentic AI in the fintech market. Developing, integrating, and maintaining advanced AI systems demand substantial investment in infrastructure, skilled personnel, and continuous model training. Smaller financial institutions struggle to justify such expenses, slowing market democratization. These costs also raise barriers to experimentation and innovation, limiting scalability and reducing the overall pace of AI-driven transformation across the financial ecosystem.
Opportunity:
Rising Digital Transformation
Rising digital transformation presents a major opportunity for the Agentic AI in Fintech Market. Financial institutions are rapidly digitizing services to meet evolving customer expectations and regulatory demands. Agentic AI enhances this shift by enabling proactive, intelligent systems that personalize experiences, optimize operations, and predict market trends. Integration with cloud computing, IoT, and blockchain further expands capabilities. As fintech ecosystems grow, agentic AI becomes a cornerstone of innovation, driving smarter, faster, and more secure financial services across global markets.
Threat:
Data Privacy & Security Risks
Data privacy and security risks pose a major hindrance to the growth of agentic AI in the fintech market. Handling sensitive financial data increases vulnerability to breaches, misuse, and regulatory penalties. Concerns over unauthorized access and compliance with stringent data protection laws discourage adoption. These risks erode customer trust, delay innovation, and compel firms to invest heavily in cybersecurity, further straining operational budgets and slowing large-scale AI deployment.
Covid-19 Impact:
The COVID-19 pandemic accelerated the adoption of Agentic AI in fintech by highlighting the need for resilient, automated systems. Remote operations and digital banking surged, prompting institutions to deploy AI agents for fraud detection, customer support, and financial planning. The crisis underscored the value of real-time insights and adaptive technologies. While initial disruptions affected implementation timelines, post-pandemic recovery has fueled investment in autonomous AI. The pandemic reshaped fintech priorities, positioning agentic AI as a vital tool for future-proofing financial services.
The algorithmic trading segment is expected to be the largest during the forecast period
The algorithmic trading segment is expected to account for the largest market share during the forecast period, as Agentic AI enhances trading strategies by autonomously analyzing market data, executing trades, and adapting to real-time conditions. These systems outperform traditional models by learning from outcomes and optimizing performance. Financial firms leverage agentic AI to reduce latency, manage risk, and capitalize on market opportunities. As algorithmic trading becomes more sophisticated, its dominance in fintech AI applications continues to grow.
The banking segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the banking segment is predicted to witness the highest growth rate, as Agentic AI transforms banking by automating customer service, personalizing financial advice, and streamlining back-office operations. These intelligent agents enable real-time fraud detection, credit assessments, and transaction monitoring, enhancing security and efficiency. Banks are investing in AI-driven platforms to improve customer engagement and operational agility. As digital banking expands, agentic AI becomes integral to delivering seamless, proactive services, driving rapid growth and innovation in the sector.
Region with largest share:
During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to region’s booming fintech ecosystem, large unbanked population, and government support for digital innovation drive adoption. Countries like China, India, and Singapore are leading in AI integration across financial services. Rapid mobile penetration and tech-savvy consumers’ further fuels demand. Financial institutions are deploying agentic AI to enhance customer experience, reduce fraud, and expand access. Asia Pacific’s dynamic market conditions make it a global leader in fintech AI.
Region with highest CAGR:
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to region’s advanced financial infrastructure, strong investment landscape, and early adoption of AI technologies support rapid growth. U.S. and Canadian firms are leveraging agentic AI for personalized banking, predictive analytics, and autonomous trading. Regulatory clarity and innovation hubs accelerate development. As digital transformation intensifies, North America’s focus on intelligent automation and data-driven finance positions it for leadership in agentic AI adoption.
Key players in the market
Some of the key players in Agentic AI in Fintech Market include OpenAI, Microsoft Corporation, Alphabet Inc. (Google), Anthropic, NVIDIA Corporation, IBM Corporation, Amazon Web Services (AWS), AppZen, Stripe, Inc., Visa Inc., Mastercard Incorporated, PayPal Holdings, Inc., JPMorgan Chase & Co., Wells Fargo & Company, and UiPath, Inc.
Key Developments:
In October 2025, Microsoft Corporation has deepened its partnership with OpenAI through a definitive agreement that values its investment at approximately US$135 billion, giving Microsoft a 27 % ownership stake in the newly recapitalised OpenAI Group PBC and extending its intellectual‐property rights through 2032 while validating any artificial general intelligence (AGI) via an independent expert panel.
In March 2025, Microsoft Corporation has strengthened its strategic partnership with the Government of Kuwait, planning to launch an AI-powered Azure region to accelerate national digital transformation, drive economic growth, foster AI innovation and prepare the workforce for the future.
Functionalities Covered:
• Predictive and Prescriptive Analytics
• Automated Decision-making Systems
• Conversational and Advisory Agents
• Autonomous Financial Agents
Deployment Modes Covered:
• Cloud-based
• On-premises
• Hybrid
Organization Sizes Covered:
• Large Enterprises
• Small and Medium Enterprises (SMEs)
Technologies Covered:
• Machine Learning and Deep Learning
• Natural Language Processing (NLP)
• Reinforcement Learning
• Multi-Agent Systems
• Generative AI and LLMs
• Predictive Analytics
• RPA and Cognitive Automation
Applications Covered:
• Fraud Detection and Risk Management
• Customer Service Automation
• Credit Scoring and Underwriting
• Algorithmic Trading
• Wealth and Asset Management
• Compliance and Regulatory Automation
• Financial Advisory and Decision Support
End Users Covered:
• Banking
• Insurance
• Investment Firms
• Payment Gateways
• Credit Bureaus
• Fintech Startups
• Regulatory Bodies
Regions Covered:
• North AmericaUSCanadaMexico
• EuropeGermanyUKItalyFranceSpainRest of Europe
• Asia PacificJapan China India Australia New ZealandSouth KoreaRest of Asia Pacific
• South AmericaArgentinaBrazilChileRest of South America
• Middle East & Africa Saudi ArabiaUAEQatarSouth AfricaRest of Middle East & Africa
What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements
Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances
Table of Contents
200 Pages
- 1 Executive Summary
- 2 Preface
- 2.1 Abstract
- 2.2 Stake Holders
- 2.3 Research Scope
- 2.4 Research Methodology
- 2.4.1 Data Mining
- 2.4.2 Data Analysis
- 2.4.3 Data Validation
- 2.4.4 Research Approach
- 2.5 Research Sources
- 2.5.1 Primary Research Sources
- 2.5.2 Secondary Research Sources
- 2.5.3 Assumptions
- 3 Market Trend Analysis
- 3.1 Introduction
- 3.2 Drivers
- 3.3 Restraints
- 3.4 Opportunities
- 3.5 Threats
- 3.6 Technology Analysis
- 3.7 Application Analysis
- 3.8 End User Analysis
- 3.9 Emerging Markets
- 3.10 Impact of Covid-19
- 4 Porters Five Force Analysis
- 4.1 Bargaining power of suppliers
- 4.2 Bargaining power of buyers
- 4.3 Threat of substitutes
- 4.4 Threat of new entrants
- 4.5 Competitive rivalry
- 5 Global Agentic AI in Fintech Market, By Functionality
- 5.1 Introduction
- 5.2 Predictive and Prescriptive Analytics
- 5.3 Automated Decision-making Systems
- 5.4 Conversational and Advisory Agents
- 5.5 Autonomous Financial Agents
- 6 Global Agentic AI in Fintech Market, By Deployment Mode
- 6.1 Introduction
- 6.2 Cloud-based
- 6.3 On-premises
- 6.4 Hybrid
- 7 Global Agentic AI in Fintech Market, By Organization Size
- 7.1 Introduction
- 7.2 Large Enterprises
- 7.3 Small and Medium Enterprises (SMEs)
- 8 Global Agentic AI in Fintech Market, By Technology
- 8.1 Introduction
- 8.2 Machine Learning and Deep Learning
- 8.3 Natural Language Processing (NLP)
- 8.4 Reinforcement Learning
- 8.5 Multi-Agent Systems
- 8.6 Generative AI and LLMs
- 8.7 Predictive Analytics
- 8.8 RPA and Cognitive Automation
- 9 Global Agentic AI in Fintech Market, By Application
- 9.1 Introduction
- 9.2 Fraud Detection and Risk Management
- 9.3 Customer Service Automation
- 9.4 Credit Scoring and Underwriting
- 9.5 Algorithmic Trading
- 9.6 Wealth and Asset Management
- 9.7 Compliance and Regulatory Automation
- 9.8 Financial Advisory and Decision Support
- 10 Global Agentic AI in Fintech Market, By End User
- 10.1 Introduction
- 10.2 Banking
- 10.3 Insurance
- 10.4 Investment Firms
- 10.5 Payment Gateways
- 10.6 Credit Bureaus
- 10.7 Fintech Startups
- 10.8 Regulatory Bodies
- 11 Global Agentic AI in Fintech Market, By Geography
- 11.1 Introduction
- 11.2 North America
- 11.2.1 US
- 11.2.2 Canada
- 11.2.3 Mexico
- 11.3 Europe
- 11.3.1 Germany
- 11.3.2 UK
- 11.3.3 Italy
- 11.3.4 France
- 11.3.5 Spain
- 11.3.6 Rest of Europe
- 11.4 Asia Pacific
- 11.4.1 Japan
- 11.4.2 China
- 11.4.3 India
- 11.4.4 Australia
- 11.4.5 New Zealand
- 11.4.6 South Korea
- 11.4.7 Rest of Asia Pacific
- 11.5 South America
- 11.5.1 Argentina
- 11.5.2 Brazil
- 11.5.3 Chile
- 11.5.4 Rest of South America
- 11.6 Middle East & Africa
- 11.6.1 Saudi Arabia
- 11.6.2 UAE
- 11.6.3 Qatar
- 11.6.4 South Africa
- 11.6.5 Rest of Middle East & Africa
- 12 Key Developments
- 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
- 12.2 Acquisitions & Mergers
- 12.3 New Product Launch
- 12.4 Expansions
- 12.5 Other Key Strategies
- 13 Company Profiling
- 13.1 OpenAI
- 13.2 Microsoft Corporation
- 13.3 Alphabet Inc. (Google)
- 13.4 Anthropic
- 13.5 NVIDIA Corporation
- 13.6 IBM Corporation
- 13.7 Amazon Web Services (AWS)
- 13.8 AppZen
- 13.9 Stripe, Inc.
- 13.10 Visa Inc.
- 13.11 Mastercard Incorporated
- 13.12 PayPal Holdings, Inc.
- 13.13 JPMorgan Chase & Co.
- 13.14 Wells Fargo & Company
- 13.15 UiPath, Inc.
- List of Tables
- Table 1 Global Agentic AI in Fintech Market Outlook, By Region (2024-2032) ($MN)
- Table 2 Global Agentic AI in Fintech Market Outlook, By Functionality (2024-2032) ($MN)
- Table 3 Global Agentic AI in Fintech Market Outlook, By Predictive and Prescriptive Analytics (2024-2032) ($MN)
- Table 4 Global Agentic AI in Fintech Market Outlook, By Automated Decision-making Systems (2024-2032) ($MN)
- Table 5 Global Agentic AI in Fintech Market Outlook, By Conversational and Advisory Agents (2024-2032) ($MN)
- Table 6 Global Agentic AI in Fintech Market Outlook, By Autonomous Financial Agents (2024-2032) ($MN)
- Table 7 Global Agentic AI in Fintech Market Outlook, By Deployment Mode (2024-2032) ($MN)
- Table 8 Global Agentic AI in Fintech Market Outlook, By Cloud-based (2024-2032) ($MN)
- Table 9 Global Agentic AI in Fintech Market Outlook, By On-premises (2024-2032) ($MN)
- Table 10 Global Agentic AI in Fintech Market Outlook, By Hybrid (2024-2032) ($MN)
- Table 11 Global Agentic AI in Fintech Market Outlook, By Organization Size (2024-2032) ($MN)
- Table 12 Global Agentic AI in Fintech Market Outlook, By Large Enterprises (2024-2032) ($MN)
- Table 13 Global Agentic AI in Fintech Market Outlook, By Small and Medium Enterprises (SMEs) (2024-2032) ($MN)
- Table 14 Global Agentic AI in Fintech Market Outlook, By Technology (2024-2032) ($MN)
- Table 15 Global Agentic AI in Fintech Market Outlook, By Machine Learning and Deep Learning (2024-2032) ($MN)
- Table 16 Global Agentic AI in Fintech Market Outlook, By Natural Language Processing (NLP) (2024-2032) ($MN)
- Table 17 Global Agentic AI in Fintech Market Outlook, By Reinforcement Learning (2024-2032) ($MN)
- Table 18 Global Agentic AI in Fintech Market Outlook, By Multi-Agent Systems (2024-2032) ($MN)
- Table 19 Global Agentic AI in Fintech Market Outlook, By Generative AI and LLMs (2024-2032) ($MN)
- Table 20 Global Agentic AI in Fintech Market Outlook, By Predictive Analytics (2024-2032) ($MN)
- Table 21 Global Agentic AI in Fintech Market Outlook, By RPA and Cognitive Automation (2024-2032) ($MN)
- Table 22 Global Agentic AI in Fintech Market Outlook, By Application (2024-2032) ($MN)
- Table 23 Global Agentic AI in Fintech Market Outlook, By Fraud Detection and Risk Management (2024-2032) ($MN)
- Table 24 Global Agentic AI in Fintech Market Outlook, By Customer Service Automation (2024-2032) ($MN)
- Table 25 Global Agentic AI in Fintech Market Outlook, By Credit Scoring and Underwriting (2024-2032) ($MN)
- Table 26 Global Agentic AI in Fintech Market Outlook, By Algorithmic Trading (2024-2032) ($MN)
- Table 27 Global Agentic AI in Fintech Market Outlook, By Wealth and Asset Management (2024-2032) ($MN)
- Table 28 Global Agentic AI in Fintech Market Outlook, By Compliance and Regulatory Automation (2024-2032) ($MN)
- Table 29 Global Agentic AI in Fintech Market Outlook, By Financial Advisory and Decision Support (2024-2032) ($MN)
- Table 30 Global Agentic AI in Fintech Market Outlook, By End User (2024-2032) ($MN)
- Table 31 Global Agentic AI in Fintech Market Outlook, By Banking (2024-2032) ($MN)
- Table 32 Global Agentic AI in Fintech Market Outlook, By Insurance (2024-2032) ($MN)
- Table 33 Global Agentic AI in Fintech Market Outlook, By Investment Firms (2024-2032) ($MN)
- Table 34 Global Agentic AI in Fintech Market Outlook, By Payment Gateways (2024-2032) ($MN)
- Table 35 Global Agentic AI in Fintech Market Outlook, By Credit Bureaus (2024-2032) ($MN)
- Table 36 Global Agentic AI in Fintech Market Outlook, By Fintech Startups (2024-2032) ($MN)
- Table 37 Global Agentic AI in Fintech Market Outlook, By Regulatory Bodies (2024-2032) ($MN)
- Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.


