AI-based Personalization Engines Market Forecasts to 2032 – Global Analysis By Component (Software and Services), Deployment Mode, Technology, Application, End User and By Geography
Description
According to Stratistics MRC, the Global AI-based Personalization Engines Market is accounted for $488.64 billion in 2025 and is expected to reach $800.19 billion by 2032 growing at a CAGR of 7.3% during the forecast period. AI-based Personalization Engines are advanced software systems that leverage artificial intelligence, machine learning, and data analytics to deliver customized experiences, recommendations, or content to individual users. These engines analyze user behavior, preferences, demographics, and historical interactions to predict and suggest products, services, or content that align with each user’s unique interests. Widely used in e-commerce, streaming platforms, digital marketing, and online services, they enhance engagement, satisfaction, and conversion rates. By continuously learning from user interactions, AI personalization engines dynamically adapt strategies, ensuring relevant, timely, and context-aware experiences, thereby driving loyalty and optimizing business outcomes.
Market Dynamics:
Driver:
Advancements in AI and machine learning
Algorithms now support real-time behavioral analysis predictive targeting and contextual content delivery across websites apps and communication channels. Platforms integrate deep learning NLP and reinforcement learning to optimize user journeys and engagement strategies. Demand for scalable and adaptive personalization is rising across retail media finance and healthcare sectors. Enterprises are aligning AI capabilities with customer experience loyalty and conversion goals. These dynamics are propelling platform innovation across personalization-driven ecosystems.
Restraint:
Data privacy and security concerns
Personalization requires access to sensitive behavioral demographic and transactional data that may trigger regulatory scrutiny and user backlash. Enterprises face challenges in complying with GDPR CCPA and other data protection laws while maintaining personalization accuracy. Lack of transparency consent management and data governance degrades platform credibility and stakeholder confidence. Breaches misuse and algorithmic bias further complicate risk mitigation and ethical alignment. These constraints continue to hinder platform scalability and cross-sector integration.
Opportunity:
Increased ROI from personalization strategies
Platforms enhance conversion rates customer retention and lifetime value by tailoring content offers and interactions to individual preferences. Integration with CRM CDP and analytics tools supports omnichannel orchestration and performance tracking. Demand for measurable and scalable personalization is rising across subscription models e-commerce and digital banking. Enterprises are aligning personalization outputs with KPIs attribution models and campaign optimization frameworks. These trends are fostering growth across ROI-driven personalization infrastructure and strategy.
Threat:
Consumer resistance to over-personalization
Excessive targeting intrusive recommendations and lack of relevance degrade user experience and trigger opt-outs. Consumers express discomfort with algorithmic manipulation and behavioral profiling especially when transparency is lacking. Enterprises must balance personalization with privacy control and contextual sensitivity to avoid backlash and churn. Lack of explainability and ethical safeguards complicates trust-building and regulatory compliance. These limitations continue to constrain platform performance and adoption across personalization-sensitive markets.
Covid-19 Impact:
The pandemic accelerated digital engagement and personalization demand as consumers shifted to online channels for shopping entertainment and healthcare. Enterprises used AI engines to tailor messaging product recommendations and support workflows across remote and mobile platforms. Investment in cloud-native personalization real-time analytics and customer segmentation surged across sectors. Public awareness of data usage and algorithmic influence increased across consumer and policy circles. Post-pandemic strategies now include personalization as a core pillar of digital transformation and customer experience. These shifts are reinforcing long-term investment in AI-based personalization infrastructure and governance.
The retail & E-commerce segment is expected to be the largest during the forecast period
The retail & E-commerce segment is expected to account for the largest market share during the forecast period due to its high-volume data availability conversion-driven use cases and platform maturity. Personalization engines support product recommendations dynamic pricing and cart recovery across web mobile and in-store channels. Integration with inventory CRM and loyalty systems enhances relevance and operational efficiency. Demand for real-time and omnichannel personalization is rising across fashion electronics grocery and marketplace models. Enterprises align personalization strategies with merchandising customer lifetime value and campaign ROI. These capabilities are boosting segment dominance across commerce-centric personalization platforms.
The healthcare & life sciences segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the healthcare & life sciences segment is predicted to witness the highest growth rate as personalization engines expand across patient engagement clinical decision support and digital therapeutics. Platforms tailor health content appointment reminders and treatment pathways based on patient history preferences and risk profiles. Integration with EHR telehealth and wearable data enhances contextualization and outcome tracking. Demand for scalable and privacy-compliant personalization is rising across chronic care mental health and wellness programs. Providers align personalization with adherence engagement and value-based care metrics.
Region with largest share:
During the forecast period, the North America region is expected to hold the largest market share due to its digital infrastructure consumer data availability and enterprise investment across personalization technologies. Enterprises deploy AI engines across retail finance healthcare and media to optimize engagement conversion and retention. Investment in cloud platforms data governance and algorithmic innovation supports scalability and compliance. Presence of leading vendors research institutions and regulatory frameworks drives ecosystem maturity and adoption. Firms align personalization strategies with privacy mandates customer experience goals and competitive differentiation.
Region with highest CAGR:
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR as mobile-first engagement digital commerce and healthcare innovation converge across regional economies. Countries like China India Japan and South Korea scale personalization platforms across retail fintech edtech and healthtech sectors. Government-backed programs support AI adoption data infrastructure and startup incubation across personalization use cases. Local providers offer multilingual culturally adapted and cost-effective solutions tailored to regional consumer behavior and compliance needs. Demand for scalable and inclusive personalization infrastructure is rising across urban and rural populations. These trends are accelerating regional growth across AI-based personalization innovation and deployment.
Key players in the market
Some of the key players in AI-based Personalization Engines Market include Adobe Inc., Salesforce Inc., Oracle Corporation, SAP SE, Dynamic Yield Ltd., Algonomy Inc., Sitecore Holding II A/S, Insider Inc., Netcore Cloud Pvt. Ltd., Optimizely Inc., Bloomreach Inc., Kibo Software Inc., RichRelevance Inc., Luigi’s Box s.r.o. and Segmentify Yazılım A.Ş.
Key Developments:
In July 2025, Salesforce launched Personalization AI, a real-time engine built on Data Cloud and Customer 360, enabling hyper-personalized experiences across web, email, mobile, service, and sales channels. The platform transformed static interactions into intelligent engagement, offering instant recommendations and predictive content delivery. It also integrated with Agentforce, Salesforce’s conversational AI layer, to enhance customer and agent interactions.
In April 2025, Adobe unveiled major upgrades to Adobe Experience Platform and Adobe Target at the Adobe Summit. These included agentic AI capabilities, enabling brands to deliver next-best experience recommendations, predictive insights, and real-time experimentation workflows. The launch marked a turning point in personalization, with AI driving measurable gains in customer engagement and operational efficiency.
Components Covered:
• Software
• Services
Deployment Modes Covered:
• Cloud-Based
• On-Premise
Technologies Covered:
• Machine Learning & Deep Learning
• Natural Language Processing (NLP)
• Reinforcement Learning
• Predictive Analytics
• Real-Time Decision Engines
• AI-Powered Recommendation Systems
• Computer Vision & Emotion AI
• Generative AI for Dynamic Content Creation
• Other Technologies
Applications Covered:
• Website Personalization
• Display Advertising Personalization
• Social Media Personalization
• Email & CRM Personalization
• Mobile App Personalization
• Voice & Conversational Interfaces
• Other Applications
End Users Covered:
• Retail & E-Commerce
• Media & Entertainment
• Travel & Hospitality
• Banking, Financial Services & Insurance (BFSI)
• Healthcare & Life Sciences
• Education & E-Learning
• Other End Users
Regions Covered:
• North AmericaUSCanadaMexico
• EuropeGermanyUKItalyFranceSpainRest of Europe
• Asia PacificJapan China India Australia New ZealandSouth KoreaRest of Asia Pacific
• South AmericaArgentinaBrazilChileRest of South America
• Middle East & Africa Saudi ArabiaUAEQatarSouth AfricaRest of Middle East & Africa
What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements
Market Dynamics:
Driver:
Advancements in AI and machine learning
Algorithms now support real-time behavioral analysis predictive targeting and contextual content delivery across websites apps and communication channels. Platforms integrate deep learning NLP and reinforcement learning to optimize user journeys and engagement strategies. Demand for scalable and adaptive personalization is rising across retail media finance and healthcare sectors. Enterprises are aligning AI capabilities with customer experience loyalty and conversion goals. These dynamics are propelling platform innovation across personalization-driven ecosystems.
Restraint:
Data privacy and security concerns
Personalization requires access to sensitive behavioral demographic and transactional data that may trigger regulatory scrutiny and user backlash. Enterprises face challenges in complying with GDPR CCPA and other data protection laws while maintaining personalization accuracy. Lack of transparency consent management and data governance degrades platform credibility and stakeholder confidence. Breaches misuse and algorithmic bias further complicate risk mitigation and ethical alignment. These constraints continue to hinder platform scalability and cross-sector integration.
Opportunity:
Increased ROI from personalization strategies
Platforms enhance conversion rates customer retention and lifetime value by tailoring content offers and interactions to individual preferences. Integration with CRM CDP and analytics tools supports omnichannel orchestration and performance tracking. Demand for measurable and scalable personalization is rising across subscription models e-commerce and digital banking. Enterprises are aligning personalization outputs with KPIs attribution models and campaign optimization frameworks. These trends are fostering growth across ROI-driven personalization infrastructure and strategy.
Threat:
Consumer resistance to over-personalization
Excessive targeting intrusive recommendations and lack of relevance degrade user experience and trigger opt-outs. Consumers express discomfort with algorithmic manipulation and behavioral profiling especially when transparency is lacking. Enterprises must balance personalization with privacy control and contextual sensitivity to avoid backlash and churn. Lack of explainability and ethical safeguards complicates trust-building and regulatory compliance. These limitations continue to constrain platform performance and adoption across personalization-sensitive markets.
Covid-19 Impact:
The pandemic accelerated digital engagement and personalization demand as consumers shifted to online channels for shopping entertainment and healthcare. Enterprises used AI engines to tailor messaging product recommendations and support workflows across remote and mobile platforms. Investment in cloud-native personalization real-time analytics and customer segmentation surged across sectors. Public awareness of data usage and algorithmic influence increased across consumer and policy circles. Post-pandemic strategies now include personalization as a core pillar of digital transformation and customer experience. These shifts are reinforcing long-term investment in AI-based personalization infrastructure and governance.
The retail & E-commerce segment is expected to be the largest during the forecast period
The retail & E-commerce segment is expected to account for the largest market share during the forecast period due to its high-volume data availability conversion-driven use cases and platform maturity. Personalization engines support product recommendations dynamic pricing and cart recovery across web mobile and in-store channels. Integration with inventory CRM and loyalty systems enhances relevance and operational efficiency. Demand for real-time and omnichannel personalization is rising across fashion electronics grocery and marketplace models. Enterprises align personalization strategies with merchandising customer lifetime value and campaign ROI. These capabilities are boosting segment dominance across commerce-centric personalization platforms.
The healthcare & life sciences segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the healthcare & life sciences segment is predicted to witness the highest growth rate as personalization engines expand across patient engagement clinical decision support and digital therapeutics. Platforms tailor health content appointment reminders and treatment pathways based on patient history preferences and risk profiles. Integration with EHR telehealth and wearable data enhances contextualization and outcome tracking. Demand for scalable and privacy-compliant personalization is rising across chronic care mental health and wellness programs. Providers align personalization with adherence engagement and value-based care metrics.
Region with largest share:
During the forecast period, the North America region is expected to hold the largest market share due to its digital infrastructure consumer data availability and enterprise investment across personalization technologies. Enterprises deploy AI engines across retail finance healthcare and media to optimize engagement conversion and retention. Investment in cloud platforms data governance and algorithmic innovation supports scalability and compliance. Presence of leading vendors research institutions and regulatory frameworks drives ecosystem maturity and adoption. Firms align personalization strategies with privacy mandates customer experience goals and competitive differentiation.
Region with highest CAGR:
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR as mobile-first engagement digital commerce and healthcare innovation converge across regional economies. Countries like China India Japan and South Korea scale personalization platforms across retail fintech edtech and healthtech sectors. Government-backed programs support AI adoption data infrastructure and startup incubation across personalization use cases. Local providers offer multilingual culturally adapted and cost-effective solutions tailored to regional consumer behavior and compliance needs. Demand for scalable and inclusive personalization infrastructure is rising across urban and rural populations. These trends are accelerating regional growth across AI-based personalization innovation and deployment.
Key players in the market
Some of the key players in AI-based Personalization Engines Market include Adobe Inc., Salesforce Inc., Oracle Corporation, SAP SE, Dynamic Yield Ltd., Algonomy Inc., Sitecore Holding II A/S, Insider Inc., Netcore Cloud Pvt. Ltd., Optimizely Inc., Bloomreach Inc., Kibo Software Inc., RichRelevance Inc., Luigi’s Box s.r.o. and Segmentify Yazılım A.Ş.
Key Developments:
In July 2025, Salesforce launched Personalization AI, a real-time engine built on Data Cloud and Customer 360, enabling hyper-personalized experiences across web, email, mobile, service, and sales channels. The platform transformed static interactions into intelligent engagement, offering instant recommendations and predictive content delivery. It also integrated with Agentforce, Salesforce’s conversational AI layer, to enhance customer and agent interactions.
In April 2025, Adobe unveiled major upgrades to Adobe Experience Platform and Adobe Target at the Adobe Summit. These included agentic AI capabilities, enabling brands to deliver next-best experience recommendations, predictive insights, and real-time experimentation workflows. The launch marked a turning point in personalization, with AI driving measurable gains in customer engagement and operational efficiency.
Components Covered:
• Software
• Services
Deployment Modes Covered:
• Cloud-Based
• On-Premise
Technologies Covered:
• Machine Learning & Deep Learning
• Natural Language Processing (NLP)
• Reinforcement Learning
• Predictive Analytics
• Real-Time Decision Engines
• AI-Powered Recommendation Systems
• Computer Vision & Emotion AI
• Generative AI for Dynamic Content Creation
• Other Technologies
Applications Covered:
• Website Personalization
• Display Advertising Personalization
• Social Media Personalization
• Email & CRM Personalization
• Mobile App Personalization
• Voice & Conversational Interfaces
• Other Applications
End Users Covered:
• Retail & E-Commerce
• Media & Entertainment
• Travel & Hospitality
• Banking, Financial Services & Insurance (BFSI)
• Healthcare & Life Sciences
• Education & E-Learning
• Other End Users
Regions Covered:
• North AmericaUSCanadaMexico
• EuropeGermanyUKItalyFranceSpainRest of Europe
• Asia PacificJapan China India Australia New ZealandSouth KoreaRest of Asia Pacific
• South AmericaArgentinaBrazilChileRest of South America
• Middle East & Africa Saudi ArabiaUAEQatarSouth AfricaRest of Middle East & Africa
What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements
Table of Contents
200 Pages
- 1 Executive Summary
- 2 Preface
- 2.1 Abstract
- 2.2 Stake Holders
- 2.3 Research Scope
- 2.4 Research Methodology
- 2.4.1 Data Mining
- 2.4.2 Data Analysis
- 2.4.3 Data Validation
- 2.4.4 Research Approach
- 2.5 Research Sources
- 2.5.1 Primary Research Sources
- 2.5.2 Secondary Research Sources
- 2.5.3 Assumptions
- 3 Market Trend Analysis
- 3.1 Introduction
- 3.2 Drivers
- 3.3 Restraints
- 3.4 Opportunities
- 3.5 Threats
- 3.6 Technology Analysis
- 3.7 Application Analysis
- 3.8 End User Analysis
- 3.9 Emerging Markets
- 3.10 Impact of Covid-19
- 4 Porters Five Force Analysis
- 4.1 Bargaining power of suppliers
- 4.2 Bargaining power of buyers
- 4.3 Threat of substitutes
- 4.4 Threat of new entrants
- 4.5 Competitive rivalry
- 5 Global AI-based Personalization Engines Market, By Component
- 5.1 Introduction
- 5.2 Software
- 5.2.1 Personalization Engines & Platforms
- 5.2.2 Customer Data Platforms (CDPs)
- 5.2.3 AI Analytics & Recommendation Tools
- 5.2.4 Integration & API Middleware
- 5.3 Services
- 5.3.1 Consulting & Strategy
- 5.3.2 Deployment & Integration
- 5.3.3 Managed Services
- 5.3.4 Training & Support
- 6 Global AI-based Personalization Engines Market, By Deployment Mode
- 6.1 Introduction
- 6.2 Cloud-Based
- 6.3 On-Premise
- 7 Global AI-based Personalization Engines Market, By Technology
- 7.1 Introduction
- 7.2 Machine Learning & Deep Learning
- 7.3 Natural Language Processing (NLP)
- 7.4 Reinforcement Learning
- 7.5 Predictive Analytics
- 7.6 Real-Time Decision Engines
- 7.7 AI-Powered Recommendation Systems
- 7.8 Computer Vision & Emotion AI
- 7.9 Generative AI for Dynamic Content Creation
- 7.10 Other Technologs
- 9 Global AI-based Personalization Engines Market, By Application
- 9.1 Introduction
- 9.2 Website Personalization
- 9.3 Display Advertising Personalization
- 9.4 Social Media Personalization
- 9.5 Email & CRM Personalization
- 9.6 Mobile App Personalization
- 9.7 Voice & Conversational Interfaces
- 9.9 Other Applications
- 10 Global AI-based Personalization Engines Market, By End User
- 10.1 Introduction
- 10.2 Retail & E-Commerce
- 10.3 Media & Entertainment
- 10.4 Travel & Hospitality
- 10.5 Banking, Financial Services & Insurance (BFSI)
- 10.6 Healthcare & Life Sciences
- 10.7 Education & E-Learning
- 10.8 Other End Users
- 11 Global AI-based Personalization Engines Market, By Geography
- 11.1 Introduction
- 11.2 North America
- 11.2.1 US
- 11.2.2 Canada
- 11.2.3 Mexico
- 11.3 Europe
- 11.3.1 Germany
- 11.3.2 UK
- 11.3.3 Italy
- 11.3.4 France
- 11.3.5 Spain
- 11.3.6 Rest of Europe
- 11.4 Asia Pacific
- 11.4.1 Japan
- 11.4.2 China
- 11.4.3 India
- 11.4.4 Australia
- 11.4.5 New Zealand
- 11.4.6 South Korea
- 11.4.7 Rest of Asia Pacific
- 11.5 South America
- 11.5.1 Argentina
- 11.5.2 Brazil
- 11.5.3 Chile
- 11.5.4 Rest of South America
- 11.6 Middle East & Africa
- 11.6.1 Saudi Arabia
- 11.6.2 UAE
- 11.6.3 Qatar
- 11.6.4 South Africa
- 11.6.5 Rest of Middle East & Africa
- 12 Key Developments
- 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
- 12.2 Acquisitions & Mergers
- 12.3 New Product Launch
- 12.4 Expansions
- 12.5 Other Key Strategies
- 13 Company Profiling
- 13.1 Adobe Inc.
- 13.2 Salesforce Inc.
- 13.3 Oracle Corporation
- 13.4 SAP SE
- 13.5 Dynamic Yield Ltd.
- 13.6 Algonomy Inc.
- 13.7 Sitecore Holding II A/S
- 13.8 Insider Inc.
- 13.9 Netcore Cloud Pvt. Ltd.
- 13.10 Optimizely Inc.
- 13.11 Bloomreach Inc.
- 13.12 Kibo Software Inc.
- 13.13 RichRelevance Inc.
- 13.14 Luigi’s Box s.r.o.
- 13.15 Segmentify Yazılım A.Ş.
- List of Tables
- Table 1 Global AI-based Personalization Engines Market Outlook, By Region (2024-2032) ($MN)
- Table 2 Global AI-based Personalization Engines Market Outlook, By Component (2024-2032) ($MN)
- Table 3 Global AI-based Personalization Engines Market Outlook, By Software (2024-2032) ($MN)
- Table 4 Global AI-based Personalization Engines Market Outlook, By Personalization Engines & Platforms (2024-2032) ($MN)
- Table 5 Global AI-based Personalization Engines Market Outlook, By Customer Data Platforms (CDPs) (2024-2032) ($MN)
- Table 6 Global AI-based Personalization Engines Market Outlook, By AI Analytics & Recommendation Tools (2024-2032) ($MN)
- Table 7 Global AI-based Personalization Engines Market Outlook, By Integration & API Middleware (2024-2032) ($MN)
- Table 8 Global AI-based Personalization Engines Market Outlook, By Services (2024-2032) ($MN)
- Table 9 Global AI-based Personalization Engines Market Outlook, By Consulting & Strategy (2024-2032) ($MN)
- Table 10 Global AI-based Personalization Engines Market Outlook, By Deployment & Integration (2024-2032) ($MN)
- Table 11 Global AI-based Personalization Engines Market Outlook, By Managed Services (2024-2032) ($MN)
- Table 12 Global AI-based Personalization Engines Market Outlook, By Training & Support (2024-2032) ($MN)
- Table 13 Global AI-based Personalization Engines Market Outlook, By Deployment Mode (2024-2032) ($MN)
- Table 14 Global AI-based Personalization Engines Market Outlook, By Cloud-Based (2024-2032) ($MN)
- Table 15 Global AI-based Personalization Engines Market Outlook, By On-Premise (2024-2032) ($MN)
- Table 16 Global AI-based Personalization Engines Market Outlook, By Technology (2024-2032) ($MN)
- Table 17 Global AI-based Personalization Engines Market Outlook, By Machine Learning & Deep Learning (2024-2032) ($MN)
- Table 18 Global AI-based Personalization Engines Market Outlook, By Natural Language Processing (NLP) (2024-2032) ($MN)
- Table 19 Global AI-based Personalization Engines Market Outlook, By Reinforcement Learning (2024-2032) ($MN)
- Table 20 Global AI-based Personalization Engines Market Outlook, By Predictive Analytics (2024-2032) ($MN)
- Table 21 Global AI-based Personalization Engines Market Outlook, By Real-Time Decision Engines (2024-2032) ($MN)
- Table 22 Global AI-based Personalization Engines Market Outlook, By AI-Powered Recommendation Systems (2024-2032) ($MN)
- Table 23 Global AI-based Personalization Engines Market Outlook, By Computer Vision & Emotion AI (2024-2032) ($MN)
- Table 24 Global AI-based Personalization Engines Market Outlook, By Generative AI for Dynamic Content Creation (2024-2032) ($MN)
- Table 25 Global AI-based Personalization Engines Market Outlook, By Other Technologies (2024-2032) ($MN)
- Table 26 Global AI-based Personalization Engines Market Outlook, By Application (2024-2032) ($MN)
- Table 27 Global AI-based Personalization Engines Market Outlook, By Website Personalization (2024-2032) ($MN)
- Table 28 Global AI-based Personalization Engines Market Outlook, By Display Advertising Personalization (2024-2032) ($MN)
- Table 29 Global AI-based Personalization Engines Market Outlook, By Social Media Personalization (2024-2032) ($MN)
- Table 30 Global AI-based Personalization Engines Market Outlook, By Email & CRM Personalization (2024-2032) ($MN)
- Table 31 Global AI-based Personalization Engines Market Outlook, By Mobile App Personalization (2024-2032) ($MN)
- Table 32 Global AI-based Personalization Engines Market Outlook, By Voice & Conversational Interfaces (2024-2032) ($MN)
- Table 33 Global AI-based Personalization Engines Market Outlook, By Other Applications (2024-2032) ($MN)
- Table 34 Global AI-based Personalization Engines Market Outlook, By End User (2024-2032) ($MN)
- Table 35 Global AI-based Personalization Engines Market Outlook, By Retail & E-Commerce (2024-2032) ($MN)
- Table 36 Global AI-based Personalization Engines Market Outlook, By Media & Entertainment (2024-2032) ($MN)
- Table 37 Global AI-based Personalization Engines Market Outlook, By Travel & Hospitality (2024-2032) ($MN)
- Table 38 Global AI-based Personalization Engines Market Outlook, By Banking, Financial Services & Insurance (BFSI) (2024-2032) ($MN)
- Table 39 Global AI-based Personalization Engines Market Outlook, By Healthcare & Life Sciences (2024-2032) ($MN)
- Table 40 Global AI-based Personalization Engines Market Outlook, By Education & E-Learning (2024-2032) ($MN)
- Table 41 Global AI-based Personalization Engines Market Outlook, By Other End Users (2024-2032) ($MN)
- Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

