Report cover image

AI-Driven Rare-Disease Drug-Discovery Market Forecasts to 2032 – Global Analysis By Drug Type (Small Molecule Drugs, Biologics, Gene Therapies and RNA-Based Therapeutics), Indication, Technology, Application, End User, and By Geography.

Published Nov 25, 2025
Length 200 Pages
SKU # SMR20601553

Description

According to Stratistics MRC, the Global AI-Driven Rare-Disease Drug-Discovery Market is accounted for $5.9 billion in 2025 and is expected to reach $37.7 billion by 2032 growing at a CAGR of 30.1% during the forecast period. AI-Driven Rare-Disease Drug Discovery uses machine learning to identify therapeutic targets, predict compound efficacy, and accelerate clinical trial design for rare and orphan diseases. By analyzing genomic, proteomic, and patient data, AI models uncover hidden patterns and repurpose existing drugs. This approach reduces R&D costs and timelines while improving success rates. Biotech firms and research institutions leverage these tools to address unmet medical needs, especially in conditions with limited commercial incentives, transforming how niche therapeutics are developed.

According to the National Institutes of Health, AI models trained on multi-omics data are now capable of identifying novel drug targets for rare genetic disorders that were previously considered ""undruggable"" due to a lack of understanding of their underlying pathology.

Market Dynamics:

Driver:

Advancements in machine learning algorithms

Rapid progress in machine learning is revolutionizing rare-disease drug discovery by enabling faster, more accurate target identification and compound screening. AI models can analyze complex genomic, proteomic, and clinical datasets to uncover novel therapeutic pathways. These algorithms reduce R&D timelines and improve success rates in early-stage drug development. As computational biology and deep learning techniques mature, pharmaceutical companies are increasingly integrating AI to address rare diseases with limited treatment options, driving innovation and expanding the scope of precision medicine.

Restraint:

Limited availability of patient datasets

Rare diseases inherently suffer from small patient populations, resulting in limited clinical and genomic datasets. This data scarcity hampers AI model training, validation, and generalizability. Incomplete or fragmented records reduce algorithmic accuracy and slow drug development. Privacy regulations and data silos further restrict access to high-quality datasets. Overcoming this restraint requires global data-sharing initiatives, synthetic data generation, and partnerships with patient advocacy groups. Without expanded data availability, AI’s full potential in rare-disease drug discovery remains constrained.

Opportunity:

Collaborations between AI firms and pharma

Strategic partnerships between AI technology providers and pharmaceutical companies are unlocking new opportunities in rare-disease drug discovery. These collaborations combine computational expertise with clinical and regulatory know-how, accelerating pipeline development. Joint ventures enable shared access to proprietary datasets, compound libraries, and disease models. As pharma seeks to de-risk R&D and improve ROI, AI firms offer scalable platforms for target prediction, molecule design, and trial optimization. Such alliances are reshaping drug discovery workflows and expanding therapeutic possibilities.

Threat:

Ethical and data privacy concerns

AI-driven drug discovery raises ethical and privacy concerns, especially in rare diseases where patient data is highly identifiable. Misuse of sensitive health information, lack of informed consent, and opaque algorithmic decisions can erode trust. Regulatory scrutiny around data governance, bias mitigation, and explainability is intensifying. Companies must implement robust data protection protocols, transparent AI models, and ethical review frameworks. Failure to address these risks may lead to reputational damage, legal challenges, and reduced stakeholder confidence.

Covid-19 Impact:

The COVID-19 pandemic accelerated adoption of AI in drug discovery, including rare diseases. Disruptions in clinical trials and lab access prompted a shift toward in silico modeling and virtual screening. AI platforms enabled remote collaboration, rapid hypothesis testing, and repurposing of existing compounds. The crisis highlighted the need for agile, data-driven R&D approaches. Post-pandemic, AI continues to play a central role in rebuilding resilient drug pipelines, with increased investment and regulatory support for digital innovation in rare-disease research.

The small molecule drugs segment is expected to be the largest during the forecast period

The small molecule drugs segment is expected to account for the largest market share during the forecast period, due to its established development pathways, scalability, and compatibility with AI-driven screening. These compounds are easier to synthesize, modify, and test using computational models. AI accelerates lead identification, toxicity prediction, and optimization of pharmacokinetics. Small molecules remain the preferred modality for targeting intracellular pathways and rare genetic mutations. Their cost-effectiveness and regulatory familiarity further support widespread adoption in AI-assisted rare-disease drug development.

The rare cancers segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the rare cancers segment is predicted to witness the highest growth rate, driven by unmet clinical needs and growing genomic data availability. AI tools are increasingly used to identify biomarkers, stratify patients, and design targeted therapies for rare oncology indications. Advances in multi-omics integration and real-world evidence analysis enhance treatment personalization. As precision oncology expands, rare cancer research benefits from AI’s ability to uncover actionable insights from limited datasets. This segment’s urgency and innovation potential fuel rapid growth.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, supported by rising healthcare investments, expanding biotech ecosystems, and government-led AI initiatives. Countries like China, Japan, and South Korea are integrating AI into national drug discovery programs and rare-disease registries. Regional pharma companies are partnering with AI startups to accelerate pipeline development. The region’s large population base and increasing rare-disease diagnosis rates further drive demand. Asia Pacific’s proactive stance on digital health positions it as a market leader.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR due to its advanced AI infrastructure, strong pharmaceutical presence, and supportive regulatory environment. The U.S. leads in AI-driven drug discovery through academic research, venture capital funding, and FDA pilot programs. Rare-disease advocacy groups and data-sharing networks enhance clinical trial recruitment and model training. Collaborations between tech giants and pharma firms are accelerating innovation. As precision medicine and orphan drug development gain momentum, North America drives rapid market expansion.

Key players in the market

Some of the key players in AI-Driven Rare-Disease Drug-Discovery Market include NVIDIA, Insilico Medicine, Exscientia, BenevolentAI, Google, Recursion Pharmaceuticals, Atomwise, Sanofi, Roche, Moderna, Genentech, Pfizer, IBM, AstraZeneca, CytoReason, BioNTech, Takeda and Novartis.

Key Developments:

In October 2025, Insilico Medicine announced the first AI-discovered novel target for a rare fibrosis disease has entered Phase I trials, potentially cutting years from the traditional discovery timeline.

In September 2025, NVIDIA and Recursion Pharmaceuticals expanded their collaboration, launching a new AI supercomputer platform to map the cellular biology of hundreds of poorly understood rare genetic disorders.

In August 2025, a consortium led by AstraZeneca and BenevolentAI initiated a $250 million project to apply their AI knowledge graphs to de-risk and accelerate the development of rare neurological disease therapies.

Drug Types Covered:
• Small Molecule Drugs
• Biologics
• Gene Therapies
• RNA-Based Therapeutics

Indications Covered:
• Neuromuscular Disorders
• Rare Cancers
• Metabolic Disorders
• Genetic Syndromes
• Immunological Disorders

Technologies Covered:
• Machine Learning
• Deep Learning
• NLP & Bioinformatics
• Computational Chemistry
• Knowledge Graph Modeling

Applications Covered:
• Target Identification
• Drug Repurposing
• Clinical Trial Optimization
• Biomarker Discovery

End Users Covered:
• Pharmaceutical Companies
• Biotechnology Startups
• Research Institutions
• Contract Research Organizations

Regions Covered:
• North America
US
Canada
Mexico
• Europe
Germany
UK
Italy
France
Spain
Rest of Europe
• Asia Pacific
Japan
China
India
Australia
New Zealand
South Korea
Rest of Asia Pacific
• South America
Argentina
Brazil
Chile
Rest of South America
• Middle East & Africa
Saudi Arabia
UAE
Qatar
South Africa
Rest of Middle East & Africa

What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements

Table of Contents

200 Pages
1 Executive Summary
2 Preface
2.1 Abstract
2.2 Stake Holders
2.3 Research Scope
2.4 Research Methodology
2.4.1 Data Mining
2.4.2 Data Analysis
2.4.3 Data Validation
2.4.4 Research Approach
2.5 Research Sources
2.5.1 Primary Research Sources
2.5.2 Secondary Research Sources
2.5.3 Assumptions
3 Market Trend Analysis
3.1 Introduction
3.2 Drivers
3.3 Restraints
3.4 Opportunities
3.5 Threats
3.6 Technology Analysis
3.7 Application Analysis
3.8 End User Analysis
3.9 Emerging Markets
3.10 Impact of Covid-19
4 Porters Five Force Analysis
4.1 Bargaining power of suppliers
4.2 Bargaining power of buyers
4.3 Threat of substitutes
4.4 Threat of new entrants
4.5 Competitive rivalry
5 Global AI-Driven Rare-Disease Drug-Discovery Market, By Drug Type
5.1 Introduction
5.2 Small Molecule Drugs
5.3 Biologics
5.4 Gene Therapies
5.5 RNA-Based Therapeutics
6 Global AI-Driven Rare-Disease Drug-Discovery Market, By Indication
6.1 Introduction
6.2 Neuromuscular Disorders
6.3 Rare Cancers
6.4 Metabolic Disorders
6.5 Genetic Syndromes
6.6 Immunological Disorders
7 Global AI-Driven Rare-Disease Drug-Discovery Market, By Technology
7.1 Introduction
7.2 Machine Learning
7.3 Deep Learning
7.4 NLP & Bioinformatics
7.5 Computational Chemistry
7.6 Knowledge Graph Modeling
8 Global AI-Driven Rare-Disease Drug-Discovery Market, By Application
8.1 Introduction
8.2 Target Identification
8.3 Drug Repurposing
8.4 Clinical Trial Optimization
8.5 Biomarker Discovery
9 Global AI-Driven Rare-Disease Drug-Discovery Market, By End User
9.1 Introduction
9.2 Pharmaceutical Companies
9.3 Biotechnology Startups
9.4 Research Institutions
9.5 Contract Research Organizations
10 Global AI-Driven Rare-Disease Drug-Discovery Market, By Geography
10.1 Introduction
10.2 North America
10.2.1 US
10.2.2 Canada
10.2.3 Mexico
10.3 Europe
10.3.1 Germany
10.3.2 UK
10.3.3 Italy
10.3.4 France
10.3.5 Spain
10.3.6 Rest of Europe
10.4 Asia Pacific
10.4.1 Japan
10.4.2 China
10.4.3 India
10.4.4 Australia
10.4.5 New Zealand
10.4.6 South Korea
10.4.7 Rest of Asia Pacific
10.5 South America
10.5.1 Argentina
10.5.2 Brazil
10.5.3 Chile
10.5.4 Rest of South America
10.6 Middle East & Africa
10.6.1 Saudi Arabia
10.6.2 UAE
10.6.3 Qatar
10.6.4 South Africa
10.6.5 Rest of Middle East & Africa
11 Key Developments
11.1 Agreements, Partnerships, Collaborations and Joint Ventures
11.2 Acquisitions & Mergers
11.3 New Product Launch
11.4 Expansions
11.5 Other Key Strategies
12 Company Profiling
12.1 NVIDIA
12.2 Insilico Medicine
12.3 Exscientia
12.4 BenevolentAI
12.5 Google
12.6 Recursion Pharmaceuticals
12.7 Atomwise
12.8 Sanofi
12.9 Roche
12.10 Moderna
12.11 Genentech
12.12 Pfizer
12.13 IBM
12.14 AstraZeneca
12.15 CytoReason
12.16 BioNTech
12.17 Takeda
12.18 Novartis
List of Tables
Table 1 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Region (2024-2032) ($MN)
Table 2 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Drug Type (2024-2032) ($MN)
Table 3 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Small Molecule Drugs (2024-2032) ($MN)
Table 4 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Biologics (2024-2032) ($MN)
Table 5 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Gene Therapies (2024-2032) ($MN)
Table 6 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By RNA-Based Therapeutics (2024-2032) ($MN)
Table 7 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Indication (2024-2032) ($MN)
Table 8 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Neuromuscular Disorders (2024-2032) ($MN)
Table 9 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Rare Cancers (2024-2032) ($MN)
Table 10 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Metabolic Disorders (2024-2032) ($MN)
Table 11 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Genetic Syndromes (2024-2032) ($MN)
Table 12 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Immunological Disorders (2024-2032) ($MN)
Table 13 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Technology (2024-2032) ($MN)
Table 14 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Machine Learning (2024-2032) ($MN)
Table 15 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Deep Learning (2024-2032) ($MN)
Table 16 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By NLP & Bioinformatics (2024-2032) ($MN)
Table 17 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Computational Chemistry (2024-2032) ($MN)
Table 18 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Knowledge Graph Modeling (2024-2032) ($MN)
Table 19 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Application (2024-2032) ($MN)
Table 20 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Target Identification (2024-2032) ($MN)
Table 21 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Drug Repurposing (2024-2032) ($MN)
Table 22 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Clinical Trial Optimization (2024-2032) ($MN)
Table 23 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Biomarker Discovery (2024-2032) ($MN)
Table 24 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By End User (2024-2032) ($MN)
Table 25 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Pharmaceutical Companies (2024-2032) ($MN)
Table 26 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Biotechnology Startups (2024-2032) ($MN)
Table 27 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Research Institutions (2024-2032) ($MN)
Table 28 Global AI-Driven Rare-Disease Drug-Discovery Market Outlook, By Contract Research Organizations (2024-2032) ($MN)
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.