Report cover image

AI Chipset Market Forecasts to 2032 – Global Analysis By Component (Central Processing Unit (CPU), Tensor Processing Unit (TPU), Graphics Processing Unit (GPU), Neural Processing Unit (NPU), Application-Specific Integrated Circuit (ASIC), Field-Programmab

Published Dec 16, 2025
Length 200 Pages
SKU # SMR20651242

Description

According to Stratistics MRC, the Global AI Chipset Market is accounted for $97.35 billion in 2025 and is expected to reach $641.14 billion by 2032 growing at a CAGR of 30.9% during the forecast period. An AI chipset refers to a purpose-built semiconductor component that boosts the performance of artificial intelligence operations, such as deep learning, neural network processing, and high-volume data analysis. Using architectures like GPUs, TPUs, and NPUs, it handles parallel computing tasks with greater speed and energy efficiency. These chipsets support AI functions in devices ranging from mobiles and smart gadgets to cloud servers and autonomous systems, enabling real-time insights, enhanced computational power, and more efficient execution of advanced AI algorithms. According to the index of industrial production (IIP) data, in 2020, the manufacturing sector production registered a decline of 11.1% in July, as covid-19 lockdown slows down the manufacturing process. Market Dynamics: Driver: Rise in data center investment Enterprises are scaling their cloud infrastructure to support workloads in machine learning, analytics, and generative AI. This expansion requires high-performance processors capable of handling massive parallel computations. AI chipsets are being integrated to optimize energy efficiency and accelerate inference tasks across diverse applications. Strategic investments by hyperscale providers are also driving innovation in cooling systems and hardware optimization. Collectively, these developments are positioning data centers as the backbone of AI chipset adoption worldwide. Restraint: High development and design complexity Developing architectures that balance speed, efficiency, and scalability requires significant R&D expenditure. Complexities in integrating chipsets with diverse hardware ecosystems add further hurdles. Rapid technological cycles often shorten product relevance, straining engineering teams and manufacturing pipelines. Companies are adopting modular design and simulation tools to mitigate risks, but the barrier to entry remains high. This environment makes it difficult for smaller players to compete with established semiconductor giants. Opportunity: Emergence of custom AI chipsets Custom processors are being designed to accelerate deep learning, natural language processing, and edge AI applications. These chipsets offer optimized performance compared to general-purpose GPUs or CPUs. Partnerships between semiconductor firms and cloud providers are enabling co-developed architectures for specific industries. Emerging trends include domain-specific accelerators for healthcare, automotive, and robotics. This wave of customization is redefining competitive differentiation and expanding the scope of AI hardware innovation. Threat: Rapid advancements in model compression Algorithms that reduce model size and computational requirements can lessen reliance on high-end processors. Techniques such as pruning, quantization, and knowledge distillation are enabling efficient deployment on lower-cost hardware. This trend may shift demand toward lightweight architectures rather than premium chipsets. Vendors are responding by integrating compression-aware designs into their product roadmaps. However, the pace of innovation in software optimization continues to challenge hardware-centric growth strategies. Covid-19 Impact: The pandemic reshaped priorities in AI chipset deployment across industries. Supply chain disruptions delayed production schedules and slowed hardware rollouts. At the same time, demand for AI-driven healthcare diagnostics and remote collaboration tools surged. Chipset investments accelerated in areas such as telemedicine, predictive analytics, and automated logistics. Companies adopted decentralized testing and simulation models to maintain development momentum. The graphics processing unit (GPU) segment is expected to be the largest during the forecast period The graphics processing unit (GPU) segment is expected to account for the largest market share during the forecast period. GPUs are widely recognized for their ability to handle parallel processing tasks essential for deep learning. Their versatility across training and inference workloads makes them indispensable in AI development. Advances in memory bandwidth and energy efficiency are further strengthening their role. Key applications include autonomous vehicles, healthcare imaging, and natural language processing. The healthcare segment is expected to have the highest CAGR during the forecast period Over the forecast period, the healthcare segment is predicted to witness the highest growth rate, due to rising demand for AI-driven diagnostics, drug discovery, and patient monitoring is fueling growth. Chipsets are enabling real-time analysis of medical imaging and genomic data. Integration with wearable devices is expanding applications in preventive care and personalized medicine. Partnerships between semiconductor firms and healthcare providers are accelerating innovation. Region with largest share: During the forecast period, the North America region is expected to hold the largest market share, due to the region benefits from strong investments in cloud infrastructure and AI research. Leading technology companies and universities are driving chipset innovation. Government-backed initiatives in AI and semiconductor manufacturing further strengthen the ecosystem. Adoption across industries such as automotive, healthcare, and finance is accelerating demand. Region with highest CAGR: Over the forecast period, the Middle East & Africa region is anticipated to exhibit the highest CAGR. Governments are investing heavily in smart city projects and digital transformation initiatives. Rising demand for AI in energy management, security, and healthcare is fueling expansion. Partnerships with global technology firms are bringing advanced chipset solutions to local markets. Emerging startups are leveraging AI hardware for fintech and logistics applications. This dynamic environment positions the region as a high-growth frontier for AI chipset deployment. Key players in the market Some of the key players in AI Chipset Market include NVIDIA, Groq, Advanced, Cerebras Systems, Intel Corp, Huawei, Google, IBM, Amazon, Broadcom, Microsoft, TSMC, Qualcomm, Samsung Electronics, and Apple Inc. Key Developments: In November 2025, IBM and the University of Dayton announced an agreement for the joint research and development of next-generation semiconductor technologies and materials. The collaboration aims to advance critical technologies for the age of AI including AI hardware, advanced packaging, and photonics. In November 2025, Cisco, in collaboration with Intel, has announced a first-of-its-kind integrated platform for distributed AI workloads. Powered by Intel® Xeon® 6 system-on-chip (SoC), the solution brings compute, networking, storage and security closer to data generated at the edge for real-time AI inferencing and agentic workloads. Components Covered: • Central Processing Unit (CPU) • Tensor Processing Unit (TPU) • Graphics Processing Unit (GPU) • Neural Processing Unit (NPU) • Application-Specific Integrated Circuit (ASIC) • Field-Programmable Gate Array (FPGA) • Other Specialized Processors Functions Covered: • Training • Inference Deployments Covered: • Cloud AI Computing • Edge AI Computing Technologies Covered: • Machine Learning (ML) • Generative AI • Deep Learning (DL) • Reinforcement Learning • Natural Language Processing (NLP) • Computer Vision (CV) Enterprise Types Covered: • Large Enterprises • Small and Medium Enterprises (SMEs) End Users Covered: • Consumer Electronics • Automotive & Transportation • Healthcare & Life Sciences • IT & Telecommunication • BFSI • Manufacturing & Industrial • Retail & E-commerce • Government & Defense • Agriculture • Other End Users Regions Covered: • North America o US o Canada o Mexico • Europe o Germany o UK o Italy o France o Spain o Rest of Europe • Asia Pacific o Japan o China o India o Australia o New Zealand o South Korea o Rest of Asia Pacific • South America o Argentina o Brazil o Chile o Rest of South America • Middle East & Africa o Saudi Arabia o UAE o Qatar o South Africa o Rest of Middle East & Africa What our report offers: - Market share assessments for the regional and country-level segments - Strategic recommendations for the new entrants - Covers Market data for the years 2024, 2025, 2026, 2028, and 2032 - Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations) - Strategic recommendations in key business segments based on the market estimations - Competitive landscaping mapping the key common trends - Company profiling with detailed strategies, financials, and recent developments - Supply chain trends mapping the latest technological advancements Free Customization Offerings: All the customers of this report will be entitled to receive one of the following free customization options: • Company Profiling o Comprehensive profiling of additional market players (up to 3) o SWOT Analysis of key players (up to 3) • Regional Segmentation o Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check) • Competitive Benchmarking Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

200 Pages
1 Executive Summary
2 Preface
2.1 Abstract
2.2 Stake Holders
2.3 Research Scope
2.4 Research Methodology
2.4.1 Data Mining
2.4.2 Data Analysis
2.4.3 Data Validation
2.4.4 Research Approach
2.5 Research Sources
2.5.1 Primary Research Sources
2.5.2 Secondary Research Sources
2.5.3 Assumptions
3 Market Trend Analysis
3.1 Introduction
3.2 Drivers
3.3 Restraints
3.4 Opportunities
3.5 Threats
3.6 Technology Analysis
3.7 End User Analysis
3.8 Emerging Markets
3.9 Impact of Covid-19
4 Porters Five Force Analysis
4.1 Bargaining power of suppliers
4.2 Bargaining power of buyers
4.3 Threat of substitutes
4.4 Threat of new entrants
4.5 Competitive rivalry
5 Global AI Chipset Market, By Component
5.1 Introduction
5.2 Central Processing Unit (CPU)
5.3 Tensor Processing Unit (TPU)
5.4 Graphics Processing Unit (GPU)
5.5 Neural Processing Unit (NPU)
5.6 Application-Specific Integrated Circuit (ASIC)
5.7 Field-Programmable Gate Array (FPGA)
5.8 Other Specialized Processors
6 Global AI Chipset Market, By Function
6.1 Introduction
6.2 Training
6.3 Inference
7 Global AI Chipset Market, By Deployment
7.1 Introduction
7.2 Cloud AI Computing
7.3 Edge AI Computing
7.3.1 Edge Devices
7.3.2 On-Premise Data Centers
8 Global AI Chipset Market, By Technology
8.1 Introduction
8.2 Machine Learning (ML)
8.3 Generative AI
8.4 Deep Learning (DL)
8.5 Reinforcement Learning
8.6 Natural Language Processing (NLP)
8.7 Computer Vision (CV)
9 Global AI Chipset Market, By Enterprise Type
9.1 Introduction
9.2 Large Enterprises
9.3 Small and Medium Enterprises (SMEs)
10 Global AI Chipset Market, By End User
10.1 Introduction
10.2 Consumer Electronics
10.3 Automotive & Transportation
10.4 Healthcare & Life Sciences
10.5 IT & Telecommunication
10.6 BFSI
10.7 Manufacturing & Industrial
10.8 Retail & E-commerce
10.9 Government & Defense
10.10 Agriculture
10.11 Other End Users
11 Global AI Chipset Market, By Geography
11.1 Introduction
11.2 North America
11.2.1 US
11.2.2 Canada
11.2.3 Mexico
11.3 Europe
11.3.1 Germany
11.3.2 UK
11.3.3 Italy
11.3.4 France
11.3.5 Spain
11.3.6 Rest of Europe
11.4 Asia Pacific
11.4.1 Japan
11.4.2 China
11.4.3 India
11.4.4 Australia
11.4.5 New Zealand
11.4.6 South Korea
11.4.7 Rest of Asia Pacific
11.5 South America
11.5.1 Argentina
11.5.2 Brazil
11.5.3 Chile
11.5.4 Rest of South America
11.6 Middle East & Africa
11.6.1 Saudi Arabia
11.6.2 UAE
11.6.3 Qatar
11.6.4 South Africa
11.6.5 Rest of Middle East & Africa
12 Key Developments
12.1 Agreements, Partnerships, Collaborations and Joint Ventures
12.2 Acquisitions & Mergers
12.3 New Product Launch
12.4 Expansions
12.5 Other Key Strategies
13 Company Profiling
13.1 NVIDIA
13.2 Groq
13.3 Advanced Micro Devices (AMD)
13.4 Cerebras Systems
13.5 Intel Corporation
13.6 Huawei
13.7 Google
13.8 IBM
13.9 Amazon
13.10 Broadcom
13.11 Microsoft Corporation
13.12 TSMC
13.13 Qualcomm
13.14 Samsung Electronics
13.15 Apple Inc.
List of Tables
Table 1 Global AI Chipset Market Outlook, By Region (2024-2032) ($MN)
Table 2 Global AI Chipset Market Outlook, By Component (2024-2032) ($MN)
Table 3 Global AI Chipset Market Outlook, By Central Processing Unit (CPU) (2024-2032) ($MN)
Table 4 Global AI Chipset Market Outlook, By Tensor Processing Unit (TPU) (2024-2032) ($MN)
Table 5 Global AI Chipset Market Outlook, By Graphics Processing Unit (GPU) (2024-2032) ($MN)
Table 6 Global AI Chipset Market Outlook, By Neural Processing Unit (NPU) (2024-2032) ($MN)
Table 7 Global AI Chipset Market Outlook, By Application-Specific Integrated Circuit (ASIC) (2024-2032) ($MN)
Table 8 Global AI Chipset Market Outlook, By Field-Programmable Gate Array (FPGA) (2024-2032) ($MN)
Table 9 Global AI Chipset Market Outlook, By Other Specialized Processors (2024-2032) ($MN)
Table 10 Global AI Chipset Market Outlook, By Function (2024-2032) ($MN)
Table 11 Global AI Chipset Market Outlook, By Training (2024-2032) ($MN)
Table 12 Global AI Chipset Market Outlook, By Inference (2024-2032) ($MN)
Table 13 Global AI Chipset Market Outlook, By Deployment (2024-2032) ($MN)
Table 14 Global AI Chipset Market Outlook, By Cloud AI Computing (2024-2032) ($MN)
Table 15 Global AI Chipset Market Outlook, By Edge AI Computing (2024-2032) ($MN)
Table 16 Global AI Chipset Market Outlook, By Edge Devices (2024-2032) ($MN)
Table 17 Global AI Chipset Market Outlook, By On-Premise Data Centers (2024-2032) ($MN)
Table 18 Global AI Chipset Market Outlook, By Technology (2024-2032) ($MN)
Table 19 Global AI Chipset Market Outlook, By Machine Learning (ML) (2024-2032) ($MN)
Table 20 Global AI Chipset Market Outlook, By Generative AI (2024-2032) ($MN)
Table 21 Global AI Chipset Market Outlook, By Deep Learning (DL) (2024-2032) ($MN)
Table 22 Global AI Chipset Market Outlook, By Reinforcement Learning (2024-2032) ($MN)
Table 23 Global AI Chipset Market Outlook, By Natural Language Processing (NLP) (2024-2032) ($MN)
Table 24 Global AI Chipset Market Outlook, By Computer Vision (CV) (2024-2032) ($MN)
Table 25 Global AI Chipset Market Outlook, By Enterprise Type (2024-2032) ($MN)
Table 26 Global AI Chipset Market Outlook, By Large Enterprises (2024-2032) ($MN)
Table 27 Global AI Chipset Market Outlook, By Small and Medium Enterprises (SMEs) (2024-2032) ($MN)
Table 28 Global AI Chipset Market Outlook, By End User (2024-2032) ($MN)
Table 29 Global AI Chipset Market Outlook, By Consumer Electronics (2024-2032) ($MN)
Table 30 Global AI Chipset Market Outlook, By Automotive & Transportation (2024-2032) ($MN)
Table 31 Global AI Chipset Market Outlook, By Healthcare & Life Sciences (2024-2032) ($MN)
Table 32 Global AI Chipset Market Outlook, By IT & Telecommunication (2024-2032) ($MN)
Table 33 Global AI Chipset Market Outlook, By BFSI (2024-2032) ($MN)
Table 34 Global AI Chipset Market Outlook, By Manufacturing & Industrial (2024-2032) ($MN)
Table 35 Global AI Chipset Market Outlook, By Retail & E-commerce (2024-2032) ($MN)
Table 36 Global AI Chipset Market Outlook, By Government & Defense (2024-2032) ($MN)
Table 37 Global AI Chipset Market Outlook, By Agriculture (2024-2032) ($MN)
Table 38 Global AI Chipset Market Outlook, By Other End Users (2024-2032) ($MN)
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.