
Vehicle-road-cloud Integration and C-V2X Industry Research Report, 2025
Description
Vehicle-side C-V2X Application Scenarios: Transition from R16 to R17, Providing a Communication Base for High-level Autonomous Driving, with the C-V2X On-board Explosion Period Approaching
In 2024, the C-V2X pre-installations of passenger cars in China was approximately 500,000 units, with an assembly rate of 2.21%. It is expected that by 2028, the installations will exceed 2 million units, and the installation rate will exceed 8%. Once the pre-installed penetration rate of C-V2X exceeds 10%, the industry will enter a mature stage.
The main driving force lies in the significant expansion of application scenarios of R17 protocol. The R17 C-V2X module achieves three breakthroughs of ""global connection - collaborative perception - safe and controllable"", providing a communication base for high-level autonomous driving. With key technologies such as RedCap, NTN satellite networking, and MBS broadcasting entering the mass production stage in 2025, the Internet of Vehicles will enter a new stage of ""global intelligence"".
Key Technologies and application scenarios of R17 protocol in autonomous vehicles:
Vulnerable Road User Protection (V2P): R17 focuses on optimizing the reliability and delay of the direct communication link (PC5 interface), supporting vulnerable road users such as pedestrians and non-motorized vehicles to share location information in real-time through low-power terminals (such as wearable devices). Vehicles can receive collision warnings within 3ms, significantly improving safety in high-risk areas such as urban intersections and school surroundings. It is applicable to scenarios such as early warning for pedestrians suddenly crossing the road and blind spot prompts for non-motorized vehicles.
High-precision Environmental Perception Sharing: MBS adopts the point-to-multipoint (PTM) transmission mode. The Road Side Unit (RSU) distributes the same point cloud/video data to multiple vehicles simultaneously through shared air interface resources, saving 70% of air interface resources compared with the unicast mode and making up for the blind spot of single-vehicle perception. It enhances the vehicle's ability to identify obstacles and construction areas, with end-to-end data transmission < 20ms and warning response time ≤ 50ms.
Group Safety Information Broadcasting: MBS supports broadcast/multicast modes. The Road Side Unit (RSU) can uniformly push emergency accident, bad weather warning, or traffic control information to regional vehicles, saving 70% of air interface resources compared with unicast, alleviating network congestion in dense scenarios such as crossroads and highway ramps, and applicable to scenarios such as accident warning in tunnels and coordinated scheduling of traffic lights.
Emergency Communication in Remote Areas: Integrating Non-Terrestrial Network (NTN) satellite communication technology, vehicles in areas without ground base station coverage (such as forests and deserts) can send distress signals or receive navigation information through low-orbit satellite links, supporting emergency rescue and path planning, and filling the coverage blind area of traditional cellular networks. It is applicable to scenarios such as off-road adventure vehicles getting out of trouble and seeking help, and long-distance freight vehicles monitoring in remote sections.
Navigation in Complex Urban Environments: R17 improves the positioning accuracy to centimeter level (integrating GNSS + RTK). Combined with multipath/NLOS suppression algorithms, it improves the positioning reliability in satellite signal blind areas such as tunnels and under viaducts. Vehicles share real-time positions through V2V to dynamically optimize detour paths in congested sections. It is applicable to complex scenarios such as automatic parking in underground parking lots and precise guidance at urban viaduct ramps.
RedCap Terminal Support: Reducing the number of antennas (1-2) and bandwidth requirements (20MHz Sub-6GHz), the module cost is reduced, and power consumption is reduced by 20%-30%.
C-V2X modules have evolved from the initial R14 LTE-V2X to R16 5G NR C-V2X. R17 modules have been released one after another in 2024 and will be mass-produced and installed in vehicles in 2025.
R16 Protocol:
5G NR C-V2X has achieved large-scale mass production and on-board installation in 2024. For example, ZTE's 5G R16 ZM9300 module is equipped with self-developed S1V 5G chip, supporting 5G and C-V2X dual-mode communication. It is the first domestic chip supporting Cellular Vehicle-to-Everything (C-V2X) and was installed in models of SAIC, GAC, FAW, etc. in 2024.
R17 Protocol:
Favalon 5G Redcap automotive-grade module AN931: Built based on the Qualcomm SA510M platform, it integrates cost, performance, module hardware compatibility, and software platform architecture. It supports the latest 5G 3GPP R17, supports 5G SA (Standalone) mode, and is downward compatible with LTE and NR - FR1 networks.
Quectel's automotive-grade 5G RedCap module AG53xC series: Built based on the Qualcomm SA510M platform, it supports the 3GPP R17 standard and performs excellently in cost-performance balance, hardware compatibility, and software architecture, bringing more efficient and economical solutions to the in-vehicle communication field. At present, this series of modules has entered the mass production stage and is expected to support mass shipments for many automotive customers within the year.
MeiG Smart MA922 series modules:
Support 3GPP Release 17 standard 5G communication, support 5G NR Standalone (SA) and Non-Standalone (NSA) networks, and are downward compatible with 4G/3G/2G networks, and can be compatible with the frequency band requirements of major countries and regions around the world.
Support C-V2X function, use the globally unified ITS 5.9GHz frequency band to deploy V2X applications, and support PC5/Uu communication modes.
Support dual-frequency GNSS + RTK high-precision positioning, which can provide high-precision position information for V2X applications to ensure accurate interaction between vehicles and other traffic participants, thereby improving driving safety and traffic efficiency.
The module has a built-in ECDSA hardware acceleration engine, supporting 6000 signature verifications per second.
It integrates a CPU processor with 20K DMIPS computing power, eliminating the need for a separate external application processor for developing V2X applications, which greatly optimizes and improves the cost.
Based on the 3GPP R17 protocol, it supports 5G NB-NTN (Narrowband Non-Terrestrial Network) satellite communication technology, supports cellular communication through satellites, ensures global communication connections, and provides service continuity and service availability anywhere.
Road-side Infrastructure: Gradually Transitioning to 6G Based on 5G-A, Realizing ""Integration of Communication, Perception, and Computing"", and Gradually Enabling Road-side Data to Be Transmitted to Vehicles
CVIS relies on road-side perception devices (including various traffic sensors such as cameras, lidar, and radar) to collect original information of traffic targets (including 2D video images and 3D point clouds, etc.), which is then sent to road-side edge computing devices for analysis and calculation (including target detection and target classification) as well as perception fusion, generating structured data to represent the attributes of traffic targets (such as vehicle speed and heading, type and influence range of traffic events, etc.).
The structured data on the road side is further processed into V2X messages, specifically I2V messages. These I2V messages are sent by the RSU (Road Side Unit) via the PC5 wireless air interface, or by 5G/4G base stations via Uu wireless air interface to road traffic participants including motor vehicles and pedestrians.
In the field of road-side perception for autonomous driving, commonly used sensors include cameras, lidars, radars, and radar-vision integrated machines.
Baidu Auto Cloud 3.0: vehicle-road-cloud coordination capabilities include functions such as integrating traffic management data and optimizing path planning. Efficient computing power and data management technology provide underlying support for the intelligent upgrading of new energy vehicles. Facing the extremely high computing power requirements of current mainstream end-to-end simulation, Baidu Auto Cloud 3.0's heterogeneous computing power platform has the advantages of large computing power reserve and efficient operation, supporting domestic chips such as Kunlunxin P800.
With the support of large computing power, breaking through barriers of CVIS, Baidu Auto Cloud 3.0 is empowering the development of end-to-end autonomous driving.
ZTE, together with China Mobile and Huawei, released the ""5G Integration of Communication, Perception, and Computing"" Internet of Vehicles architecture: It has the advantages and highlights of connecting to vehicles, providing computing power to the edge, and enabling perception to the network. This architecture has three highlights: unified air interface, integration of communication and perception, and fusion of communication and computing:
For communication connection: Migrate the originally scattered PC5 network to the 5G network, uniformly carry V2X vehicle-road information, realize wide-area network connection at a lower cost, achieve high-reliability connection guarantee based on 5G QoS and slicing, further improve network performance, reduce construction costs, and speed up deployment.
For perception: Replace road-side perception devices such as millimeter-wave radar with communication-perception integrated base stations, which have wireless communication-perception integration capabilities, provide full-process and whole-network wireless perception computing, and realize multiple functions with one network through air interface resource sharing, further improving perception performance.
For computing power: Including two levels of computing power, cloud and wireless edge, to realize V2X cloud-edge collaboration. The first-level computing power realizes wide-area management and control, and the second-level computing power realizes integration of communication and computing with the base station, supporting real-time service sinking and intelligent data offloading, which can realize low-latency edge computing and local precise push.
Please Note: PDF E-mail from Publisher purchase option allows up to 10 users and does not allow printing or editing. This functionality will require a Global Site License.
In 2024, the C-V2X pre-installations of passenger cars in China was approximately 500,000 units, with an assembly rate of 2.21%. It is expected that by 2028, the installations will exceed 2 million units, and the installation rate will exceed 8%. Once the pre-installed penetration rate of C-V2X exceeds 10%, the industry will enter a mature stage.
The main driving force lies in the significant expansion of application scenarios of R17 protocol. The R17 C-V2X module achieves three breakthroughs of ""global connection - collaborative perception - safe and controllable"", providing a communication base for high-level autonomous driving. With key technologies such as RedCap, NTN satellite networking, and MBS broadcasting entering the mass production stage in 2025, the Internet of Vehicles will enter a new stage of ""global intelligence"".
Key Technologies and application scenarios of R17 protocol in autonomous vehicles:
Vulnerable Road User Protection (V2P): R17 focuses on optimizing the reliability and delay of the direct communication link (PC5 interface), supporting vulnerable road users such as pedestrians and non-motorized vehicles to share location information in real-time through low-power terminals (such as wearable devices). Vehicles can receive collision warnings within 3ms, significantly improving safety in high-risk areas such as urban intersections and school surroundings. It is applicable to scenarios such as early warning for pedestrians suddenly crossing the road and blind spot prompts for non-motorized vehicles.
High-precision Environmental Perception Sharing: MBS adopts the point-to-multipoint (PTM) transmission mode. The Road Side Unit (RSU) distributes the same point cloud/video data to multiple vehicles simultaneously through shared air interface resources, saving 70% of air interface resources compared with the unicast mode and making up for the blind spot of single-vehicle perception. It enhances the vehicle's ability to identify obstacles and construction areas, with end-to-end data transmission < 20ms and warning response time ≤ 50ms.
Group Safety Information Broadcasting: MBS supports broadcast/multicast modes. The Road Side Unit (RSU) can uniformly push emergency accident, bad weather warning, or traffic control information to regional vehicles, saving 70% of air interface resources compared with unicast, alleviating network congestion in dense scenarios such as crossroads and highway ramps, and applicable to scenarios such as accident warning in tunnels and coordinated scheduling of traffic lights.
Emergency Communication in Remote Areas: Integrating Non-Terrestrial Network (NTN) satellite communication technology, vehicles in areas without ground base station coverage (such as forests and deserts) can send distress signals or receive navigation information through low-orbit satellite links, supporting emergency rescue and path planning, and filling the coverage blind area of traditional cellular networks. It is applicable to scenarios such as off-road adventure vehicles getting out of trouble and seeking help, and long-distance freight vehicles monitoring in remote sections.
Navigation in Complex Urban Environments: R17 improves the positioning accuracy to centimeter level (integrating GNSS + RTK). Combined with multipath/NLOS suppression algorithms, it improves the positioning reliability in satellite signal blind areas such as tunnels and under viaducts. Vehicles share real-time positions through V2V to dynamically optimize detour paths in congested sections. It is applicable to complex scenarios such as automatic parking in underground parking lots and precise guidance at urban viaduct ramps.
RedCap Terminal Support: Reducing the number of antennas (1-2) and bandwidth requirements (20MHz Sub-6GHz), the module cost is reduced, and power consumption is reduced by 20%-30%.
C-V2X modules have evolved from the initial R14 LTE-V2X to R16 5G NR C-V2X. R17 modules have been released one after another in 2024 and will be mass-produced and installed in vehicles in 2025.
R16 Protocol:
5G NR C-V2X has achieved large-scale mass production and on-board installation in 2024. For example, ZTE's 5G R16 ZM9300 module is equipped with self-developed S1V 5G chip, supporting 5G and C-V2X dual-mode communication. It is the first domestic chip supporting Cellular Vehicle-to-Everything (C-V2X) and was installed in models of SAIC, GAC, FAW, etc. in 2024.
R17 Protocol:
Favalon 5G Redcap automotive-grade module AN931: Built based on the Qualcomm SA510M platform, it integrates cost, performance, module hardware compatibility, and software platform architecture. It supports the latest 5G 3GPP R17, supports 5G SA (Standalone) mode, and is downward compatible with LTE and NR - FR1 networks.
Quectel's automotive-grade 5G RedCap module AG53xC series: Built based on the Qualcomm SA510M platform, it supports the 3GPP R17 standard and performs excellently in cost-performance balance, hardware compatibility, and software architecture, bringing more efficient and economical solutions to the in-vehicle communication field. At present, this series of modules has entered the mass production stage and is expected to support mass shipments for many automotive customers within the year.
MeiG Smart MA922 series modules:
Support 3GPP Release 17 standard 5G communication, support 5G NR Standalone (SA) and Non-Standalone (NSA) networks, and are downward compatible with 4G/3G/2G networks, and can be compatible with the frequency band requirements of major countries and regions around the world.
Support C-V2X function, use the globally unified ITS 5.9GHz frequency band to deploy V2X applications, and support PC5/Uu communication modes.
Support dual-frequency GNSS + RTK high-precision positioning, which can provide high-precision position information for V2X applications to ensure accurate interaction between vehicles and other traffic participants, thereby improving driving safety and traffic efficiency.
The module has a built-in ECDSA hardware acceleration engine, supporting 6000 signature verifications per second.
It integrates a CPU processor with 20K DMIPS computing power, eliminating the need for a separate external application processor for developing V2X applications, which greatly optimizes and improves the cost.
Based on the 3GPP R17 protocol, it supports 5G NB-NTN (Narrowband Non-Terrestrial Network) satellite communication technology, supports cellular communication through satellites, ensures global communication connections, and provides service continuity and service availability anywhere.
Road-side Infrastructure: Gradually Transitioning to 6G Based on 5G-A, Realizing ""Integration of Communication, Perception, and Computing"", and Gradually Enabling Road-side Data to Be Transmitted to Vehicles
CVIS relies on road-side perception devices (including various traffic sensors such as cameras, lidar, and radar) to collect original information of traffic targets (including 2D video images and 3D point clouds, etc.), which is then sent to road-side edge computing devices for analysis and calculation (including target detection and target classification) as well as perception fusion, generating structured data to represent the attributes of traffic targets (such as vehicle speed and heading, type and influence range of traffic events, etc.).
The structured data on the road side is further processed into V2X messages, specifically I2V messages. These I2V messages are sent by the RSU (Road Side Unit) via the PC5 wireless air interface, or by 5G/4G base stations via Uu wireless air interface to road traffic participants including motor vehicles and pedestrians.
In the field of road-side perception for autonomous driving, commonly used sensors include cameras, lidars, radars, and radar-vision integrated machines.
Baidu Auto Cloud 3.0: vehicle-road-cloud coordination capabilities include functions such as integrating traffic management data and optimizing path planning. Efficient computing power and data management technology provide underlying support for the intelligent upgrading of new energy vehicles. Facing the extremely high computing power requirements of current mainstream end-to-end simulation, Baidu Auto Cloud 3.0's heterogeneous computing power platform has the advantages of large computing power reserve and efficient operation, supporting domestic chips such as Kunlunxin P800.
With the support of large computing power, breaking through barriers of CVIS, Baidu Auto Cloud 3.0 is empowering the development of end-to-end autonomous driving.
ZTE, together with China Mobile and Huawei, released the ""5G Integration of Communication, Perception, and Computing"" Internet of Vehicles architecture: It has the advantages and highlights of connecting to vehicles, providing computing power to the edge, and enabling perception to the network. This architecture has three highlights: unified air interface, integration of communication and perception, and fusion of communication and computing:
For communication connection: Migrate the originally scattered PC5 network to the 5G network, uniformly carry V2X vehicle-road information, realize wide-area network connection at a lower cost, achieve high-reliability connection guarantee based on 5G QoS and slicing, further improve network performance, reduce construction costs, and speed up deployment.
For perception: Replace road-side perception devices such as millimeter-wave radar with communication-perception integrated base stations, which have wireless communication-perception integration capabilities, provide full-process and whole-network wireless perception computing, and realize multiple functions with one network through air interface resource sharing, further improving perception performance.
For computing power: Including two levels of computing power, cloud and wireless edge, to realize V2X cloud-edge collaboration. The first-level computing power realizes wide-area management and control, and the second-level computing power realizes integration of communication and computing with the base station, supporting real-time service sinking and intelligent data offloading, which can realize low-latency edge computing and local precise push.
Please Note: PDF E-mail from Publisher purchase option allows up to 10 users and does not allow printing or editing. This functionality will require a Global Site License.
Table of Contents
480 Pages
- Chapter 1 Definition and Market Overview of Vehicle-road-cloud Integration
- 1.1 Definition of Vehicle-road-cloud Integration
- Definition
- Subdivided Concepts
- Architecture
- Steps to Realize Data Closed-loop
- 1.2 Status Quo of Policies, Regulations and Standards for Vehicle-road-cloud Integration
- Statistics of Guiding Policies for Vehicle-road-cloud Integration, 2024-2025
- Guiding Policies for Vehicle-road-cloud Integration: Five Ministries and Commissions Promote Pilot Work on Vehicle-road-cloud Integration Applications for Intelligent Connected Vehicles
- Statistics of Local Policies for Vehicle-road-cloud Integration, 2024-2025 (1)
- Statistics of Local Policies for Vehicle-road-cloud Integration, 2024-2025 (2)
- Statistics of Local Policies for Vehicle-road-cloud Integration, 2024-2025 (3)
- Statistics of Local Policies for Vehicle-road-cloud Integration, 2024-2025 (4)
- Local Policies for Vehicle-road-cloud Integration: Zhejiang Province Intelligent Connected Vehicle Industry Development Action Plan (2025 - 2027)
- Local Policies for Vehicle-road-cloud Integration: Jinan Pilot Construction Plan for Vehicle-road-cloud Integration in the Start-up Area of New and Old Kinetic Energy Conversion
- Evolution of Communication Standards for Vehicle-road-cloud Integration: The Global Shift to C-V2X is a Foregone Conclusion
- Communication Standards for Vehicle-road-cloud Integration (Local): The First Batch of Local Standards for Vehicle-road-cloud Integration in Beijing Released
- 1.3 Scale and Pattern of Vehicle-road-cloud Integration
- Proportion Structure of Vehicle-road-cloud Integration
- Product Lines of Vehicle-road-cloud Integration Suppliers
- Industry Chain Map of Vehicle-road-cloud Integration: Comparison of Supplier Capabilities
- 1.4 Evolution Trends and Key Technical Characteristics of 5G/6G Technologies
- Stages of 5G Technology Evolution: Currently in the First Stage
- Stages of 5G Technology Evolution: R18 Standard Officially Frozen
- Stages of 5G Technology Evolution: Progress of R19 Standard
- Stages of 5G Technology Evolution: 6G Standardization Started
- Typical Technical Characteristics of 5G from R15 to R18
- Key Innovation Points of R18 Protocol (1)
- Key Innovation Points of R18 Protocol (2)
- Key Innovation Points of R18 Protocol (3)
- Key Innovation Points of R18 Protocol (4)
- Key Innovation Points of R17 Protocol (1)
- Key Innovation Points of R17 Protocol (5)
- Overview of Key Technologies of R17 Protocol
- Overview of Key Technologies of R16 Protocol
- Application of Enhanced Technology 5G-A in Vehicle-road-cloud Integration
- Enhanced Technology 5G-A Realizes Integration of Communication and Perception
- Architecture of 5G-A Integration of Communication and Perception
- Application of Enhanced Technology 5G-A: Beijing 5G-A Demonstration Line Launched
- Application of Enhanced Technology 5G-A: Shanghai Promotes 5G-A Infrastructure Construction
- Application of Enhanced Technology 5G-A: Shanghai Jinqiao 5G-A Demonstration Line Launched
- Application of Enhanced Technology 5G-A: Shanghai Taikoo Li 5G-A Smart Parking Lot Launched
- Application of Enhanced Technology 5G-A: Hangzhou 5G-A Demonstration Line Launched
- Chapter 2 Market and Trends of Vehicle-side C-V2X
- 2.1 Evolution Trend of Vehicle-side C-V2X
- Evolution Trend of In-vehicle Communication Technologies (4G/5G/6G)
- Evolution Trend of In-vehicle Communication Technologies (C-V2X)
- R16 Protocol: Technologies and Application Scenarios of In-vehicle Communication Technologies (C-V2X) (1)
- R16 Protocol: Technologies and Application Scenarios of In-vehicle Communication Technologies (C-V2X) (2)
- R16 Protocol: Technologies and Application Scenarios of In-vehicle Communication Technologies (C-V2X) (3)
- R17 Protocol: Improvements Compared with R16 Protocol (1)
- R17 Protocol: Improvements Compared with R16 Protocol (2)
- R17 Protocol: Key Technologies and Application Scenarios for Autonomous Vehicles
- R16 & R17 Protocols: New Generation 5G C-V2X Communication Module Products (1)
- R16 & R17 Protocols: New Generation 5G C-V2X Communication Module Products (2)
- R16 & R17 Protocols: New Generation 5G C-V2X Communication Module Products (3)
- 2.2 Scale of Vehicle-side C-V2X Installation
- Pre-installed C-V2X Market Size of Passenger Cars in China, 2022-2028E
- Attached Data Table: Pre-installed C-V2X Market Size of Passenger Cars in China, 2022-2028E
- 2.3 Market Pattern of Vehicle-side C-V2X
- Major Market Participants of Vehicle-side C-V2X Chips (1)
- Major Market Participants of Vehicle-side C-V2X Chips (2)
- Four Major Suppliers of C-V2X Modem Chips and AP Processor Chips
- Major Participants of C-V2X Modules (1)
- Major Participants of C-V2X Modules (2)
- Major Participants of C-V2X Modules (3)
- 2.4 Functions Realized by Vehicle-side C-V2X
- Main Functions Realized by OEMs through V2X Installation
- Collaboration between OEMs' V2X Functions and Road Side: Prompt Class Applications Do Not Access the Intelligent Driving System
- Collaboration between OEMs' V2X Functions and Road Side: Early Warning Class Applications Access the Decision-making Layer of the Intelligent Driving System
- Collaboration between OEMs' V2X Functions and Road Side: Control Class Fusion Functions Should Integrate with the Intelligent Driving System at the Perception, Decision-making and Control Levels
- OEMs' V2X Functions: Green Wave Traffic Architecture (1)
- OEMs' V2X Functions: Green Wave Traffic Architecture (2)
- 2.5 Application Status of Vehicle-side C-V2X by OEMs
- Five Requirements of OEMs for C-V2X Installation
- Layout Trend of C-V2X by OEMs
- Evolution of C-V2X Installation Forms by OEMs
- Summary of C-V2X Installed Models: Independent Brands (1)
- Summary of C-V2X Installed Models: Independent Brands (2)
- Summary of C-V2X Installed Models: Independent Brands (3)
- Summary of C-V2X Installed Models: Joint Venture Brands (1)
- Summary of C-V2X Installed Models: Joint Venture Brands (2)
- Summary of C-V2X Installed Models: Joint Venture Brands (3)
- Summary of V2X Installation by OEMs 1: BMW's Autonomous Driving Software and V2X Solution Evolution
- Summary of V2X Installation by OEMs 1: BMW's V2X Installations and Installation Rate
- Summary of V2X Installation by OEMs 1: Functions Achievable by BMW's V2X
- Summary of V2X Installation by OEMs 1: Localized R & D of BMW's V2X
- Summary of V2X Installation by OEMs 2: Mercedes-Benz's Autonomous Driving Software and V2X Solution Evolution
- Summary of V2X Installation by OEMs 2: Mercedes-Benz's V2X Installations and Installation Rate
- Summary of V2X Installation by OEMs 2: Functions Achievable by Mercedes-Benz's V2X
- Summary of V2X Installation by OEMs 3: Volkswagen's V2X Solution Evolution
- Summary of V2X Installation by OEMs 3: Volkswagen's V2X Installations and Installation Rate (including FAW-Volkswagen and SAIC-Volkswagen)
- Summary of V2X Installation by OEMs 3: Volkswagen
- Summary of V2X Installation by OEMs 3: Functions Achievable by Audi (Volkswagen) V2X
- Summary of V2X Installation by OEMs 4: Ford's Autonomous Driving Software and V2X Solution Evolution
- Summary of V2X Installation by OEMs 4: Ford's V2X Installations and Installation Rate
- Summary of V2X Installation by OEMs 4: Ford (Lincoln Corsair V2X Functions)
- Summary of V2X Installation by OEMs 4: Ford's C-V2X Functions Cover 7 Cities
- Summary of V2X Installation by OEMs 4: Ford's C-V2X Adopts Uu Interface
- Summary of V2X Installation by OEMs 4: Ford's C-V2X to Expand to Direct Connection Mode Next
- Summary of V2X Installation by OEMs 4: Functions Achievable by Ford's C-V2X System
- Summary of V2X Installation by OEMs 4: Ford's C-V2X System Prioritizes Solving Traffic Efficiency Pain Points (1)
- Summary of V2X Installation by OEMs 4: Ford's C-V2X System Prioritizes Solving Traffic Efficiency Pain Points (2)
- Summary of V2X Installation by OEMs 5: FAW Hongqi's Autonomous Driving Software and V2X Solution Evolution
- Summary of V2X Installation by OEMs 5: FAW Hongqi's V2X Installations and Installation Rate
- Summary of V2X Installation by OEMs 5: FAW Hongqi Completes Vehicle-road-cloud Integration Testing
- Summary of V2X Installation by OEMs 5: FAW Hongqi Explores Direct Communication
- Summary of V2X Installation by OEMs 5: Functions Achievable by FAW Hongqi's V2X
- Summary of V2X Installation by OEMs 6: NIO's Autonomous Driving Software and V2X Solution Evolution
- Summary of V2X Installation by OEMs 6: NIO's V2X Installations and Installation Rate
- Summary of V2X Installation by OEMs 6: NIO's V2X Technology
- Summary of V2X Installation by OEMs 7: GAC AION's V2X Installations and Installation Rate
- Summary of V2X Installation by OEMs 7: GAC AION Adopts Highly Integrated C-V2X Onboard Terminals
- Summary of V2X Installation by OEMs 8: XPeng's Next-Gen EE Architecture Introduces V2X (1)
- Summary of V2X Installation by OEMs 8: XPeng's Next-Gen EE Architecture Introduces V2X (2)
- Summary of V2X Installation by OEMs 9: SAIC Group's V2X Installations and Installation Rate
- 2.6 Latest Technical Trends of Vehicle-side C-V2X
- Stages of Vehicle-side C-V2X Technology Development: Increasing Application Scenarios
- Trend of Vehicle-side C-V2X Technology Installation: Growing Integration
- Trend of Vehicle-side C-V2X Technology Application Scenarios: Moving towards the Second Stage
- Chapter 3 Market and Trends of Road-side Perception and Edge Computing
- 3.1 Basic Technologies of Road-side Perception
- Vehicle-road Coordination Capabilities Required for Different Levels of Intelligent Roads
- Main Road-side Perception Devices
- Road-side Hardware Solutions for Vehicle-road Coordination (1)
- Road-side Hardware Solutions for Vehicle-road Coordination (2)
- 3.2 Market Size of Road-side Perception
- Market Size of C-V2X Modules for Road-side Use in China
- Market Size of Road-side Communication RSU (1)
- Market Size of Road-side Communication RSU (2)
- Market Size of Road-side Perception (Highway) (1)
- Market Size of Road-side Perception (Highway) (2)
- Market Size of Road-side Perception (Urban) (1)
- Market Size of Road-side Perception (Urban) (2)
- 3.3 Market Pattern of Road-side Perception
- Major Suppliers of Road-side Perception Integration Solutions (1)
- Major Suppliers of Road-side Perception Integration Solutions (2)
- Major Suppliers of Road-side Perception Integration Solutions (3)
- Layout of Road-side Perception Product Lines by Major Suppliers (1)
- Layout of Road-side Perception Product Lines by Major Suppliers (2)
- 3.4 Technical Trends of Road-side Perception
- Technical Trend of Road-side Perception: Multi-dimensional Perception Fusion
- Introduction of AI Technology on the Road-side: OpenV2X (1)
- Introduction of AI Technology on the Road-side: OpenV2X (2)
- Technical Trend of Road-side RSU: Moving towards Virtual RSU
- Chapter 4 Market and Trends of Edge-Cloud Market
- 4.1 Basic Technologies of Edge Computing
- Edge Computing System Architecture (1)
- Edge Computing System Architecture (2)
- Edge Computing Security Architecture
- Edge Computing Deployment View
- Locations for Edge Computing Deployment
- 4.2 Basic Technologies of Cloud-side
- Cloud Control Platform Architecture
- Basic Architecture of Cloud Control Platform
- Functional Architecture Diagram of Cloud Control Application Platform
- Software Architecture of Cloud Control Platform
- Application Architecture of Cloud Control Platform
- 4.3 Market Size and Competitive Pattern of Edge-Cloud Computing
- Market Size of China's Edge-Cloud Collaboration Market
- Summary of Edge Computing Platform Suppliers (1)
- Summary of Edge Computing Platform Suppliers (2)
- Summary of Edge Computing Platform Suppliers (3)
- Summary of Edge Computing Chips (1)
- Summary of Edge Computing Chips (2)
- Summary of Edge Computing Chips (3)
- 4.4 Edge-Cloud Collaboration Architecture and Its Role in Autonomous Driving
- Great Potential for Edge-Cloud Collaborative Computing Development
- Edge-Cloud Collaboration Framework (1)
- Edge-Cloud Collaboration Framework (2)
- Transmission Path of Edge-Cloud Collaborative Computing in Autonomous Driving
- Role of Edge-Cloud Collaborative Computing in the Development of Autonomous Driving
- Edge-Cloud Collaborative Computing Helps Autonomous Driving Reduce Costs through Data Closed-loop
- Edge Collaboration Technology Gradually Matures, Empowering High-level Autonomous Driving
- 4.5 Development Trends of Edge-Cloud Collaboration Technology
- Development Trends of Edge-Cloud Collaboration Technology
- Development Trend 1 of Edge-Cloud Collaboration Technology
- Development Trend 2 of Edge-Cloud Collaboration Technology
- Development Trend 3 of Edge-Cloud Collaboration Technology
- Chapter 5 Applications of Vehicle-road-cloud Integration
- 5.1 Implementation Path of Vehicle-road-cloud Integration
- Challenges in Vehicle-road-cloud Integration Construction
- Challenge in Vehicle-road-cloud Integration Construction: Unblocking Data Circulation System
- Demand for Collaborative Multi-party Integration in Vehicle-road-cloud Integration
- Construction Ideas for Vehicle-road-cloud Integration (1)
- Construction Ideas for Vehicle-road-cloud Integration (2)
- Construction Idea for Vehicle-road-cloud Integration: Achieving Data Closed-loop
- 5.2 Cities with Vehicle-road-cloud Integration Implementation
- Distribution of Cities with Vehicle-road-cloud Integration Implementation in China
- Summary of Implementation Progress in Some Cities with Vehicle-road-cloud Integration in China (1)
- Summary of Implementation Progress in Some Cities with Vehicle-road-cloud Integration in China (2)
- Study on Vehicle-road-cloud Integration in Beijing: Development Stages of Demonstration Zones
- Study on Vehicle-road-cloud Integration in Beijing: Evolving towards Stage 4.0, Exploring Dual-intelligence Cities
- Study on Vehicle-road-cloud Integration in Beijing: Coverage of Demonstration Zone 3.0
- Study on Vehicle-road-cloud Integration in Beijing: Characteristic Application Scenarios of Demonstration Zone 3.0
- Study on Vehicle-road-cloud Integration in Beijing (Road-side Hardware Layout): Hardware Configuration of Dual-intelligence Intersections
- Study on Vehicle-road-cloud Integration in Beijing (Road-side Hardware Layout): Multi-pole Integration Construction Plan for Demonstration Zone 3.0
- Study on Vehicle-road-cloud Integration in Beijing (Economic Benefits and People's Livelihood Value): Improving Traffic Operation and Management Efficiency (1)
- Study on Vehicle-road-cloud Integration in Beijing (Economic Benefits and People's Livelihood Value): Improving Traffic Operation and Management Efficiency (2)
- Study on Vehicle-road-cloud Integration in Beijing (Regulatory Platform): Supporting Pre-event - In-event - Post-event Regulatory System for Demonstration Zone 3.0
- Study on Vehicle-road-cloud Integration in Beijing (Safety Applications) (1)
- Study on Vehicle-road-cloud Integration in Beijing (Safety Applications) (2)
- Study on Vehicle-road-cloud Integration in Ordos (Characteristic Application Scenarios): Application Framework
- Study on Vehicle-road-cloud Integration in Ordos (Characteristic Application Scenarios): Key 1 + 5 + 3 Application Pilots
- Study on Vehicle-road-cloud Integration in Ordos (Characteristic Application Scenarios): Freight Logistics Routes
- Study on Vehicle-road-cloud Integration in Ordos (Cloud Control Platform): City-wide One Cloud Cloud Control Platform
- Study on Vehicle-road-cloud Integration in Ordos (Regulatory Platform): Establishing a Safety Monitoring Platform
- Study on Vehicle-road-cloud Integration in Hangzhou - Tongxiang - Deqing Consortium: Different Layout Focuses of the Three Cities
- Study on Vehicle-road-cloud Integration in Hangzhou - Tongxiang - Deqing Consortium: Supporting Infrastructure in Hangzhou
- Study on Vehicle-road-cloud Integration in Hangzhou - Tongxiang - Deqing Consortium: Tongxiang Completes the First Holographic Real-time Digital Twin Intersection
- Study on Vehicle-road-cloud Integration in Hangzhou - Tongxiang - Deqing Consortium: Data Upload from Tongxiang's Holographic Real-time Digital Twin Intersection to Vehicles
- Study on Vehicle-road-cloud Integration in Wuhan: Construction Achievements
- Study on Vehicle-road-cloud Integration in Chongqing (Road-side Hardware Layout): Smart Intersection Renovation
- Study on Vehicle-road-cloud Integration in Chongqing (Regulatory Platform): Autonomous Driving Regulatory Platform
- 5.3 Application Scenario 1 of Vehicle-road-cloud Integration: Autonomous Vehicles
- Functions Achievable by Intelligent Connected Vehicles Based on Vehicle-road-cloud Integration
- Maturity of Vehicle-road-cloud Integration Application in Passenger Car Autonomous Driving
- Typical Application Scenario Based on Vehicle-road-cloud Integration: Protection of Vulnerable Road Users
- Comparison of Intelligent Connected Vehicles Based on Vehicle-road-cloud Integration: Buses/Coaches
- Typical Application Case Based on Vehicle-road-cloud Integration: Chengdu's Urban-level Connected Vehicle Operation
- Typical Application Case Based on Vehicle-road-cloud Integration: Beijing's Autonomous Driving Buses
- Typical Application Case Based on Vehicle-road-cloud Integration: Ordos's Autonomous Driving Buses
- Typical Application Case Based on Vehicle-road-cloud Integration: MOGO's First Pre-installed Mass-produced L4 Vehicle-road-cloud Integration Autonomous Driving Bus
- Typical Application Case Based on Vehicle-road-cloud Integration: Guangzhou's Autonomous Driving Buses
- AVP Valet Parking Application Case Based on Vehicle-road-cloud Integration: Shenzhen Airport's Autonomous Parking 2.0
- AVP Valet Parking Application Case Based on Vehicle-road-cloud Integration: Shenzhen Airport's Autonomous Parking 2.0 Adopts NavInfo's Spatiotemporal Information Base
- 5.4 Application Scenario 2 of Vehicle-road-cloud Integration: Urban Autonomous Delivery
- Promoting Role of Vehicle-road-cloud Integration in the Development of Autonomous Delivery
- Comparison of Autonomous Delivery Solutions Based on Vehicle-road-cloud Integration
- Commercial Cooperation Modes of Autonomous Delivery Based on Vehicle-road-cloud Integration
- Implementation Status of Autonomous Delivery Based on Vehicle-road-cloud Integration
- Autonomous Delivery Application Case Based on Vehicle-road-cloud Integration: Chengdu ZTO Opens UAV + Autonomous Vehicle Combined Transport Route
- Autonomous Delivery Application Case Based on Vehicle-road-cloud Integration: Xi'an SF Express to Launch New Direct Delivery Mode from Transit Hub
- 5.5 Application Scenario 3 of Vehicle-road-cloud Integration: Urban Traffic Management
- Application Direction of Vehicle-road-cloud Integration in Urban Traffic Management: Collaborative Intelligent Connected Traffic Management (1)
- Application Direction of Vehicle-road-cloud Integration in Urban Traffic Management: Collaborative Intelligent Connected Traffic Management (2)
- Development Trend of Urban Traffic Management Based on Vehicle-road-cloud Integration: Smart City is the Ultimate Goal
- Development Trend of Urban Traffic Management Based on Vehicle-road-cloud Integration: Smart City Requires a Unified Physical Base
- Development Trend of Urban Traffic Management Based on Vehicle-road-cloud Integration: Smart City Adopts One Pool, Dual Networks Architecture
- Application Evolution of Vehicle-road-cloud Integration in Urban Traffic Management
- Application Advantages of Vehicle-road-cloud Integration in Urban Traffic Management
- Urban Traffic Management (Traffic Signal Optimization) Based on Vehicle-road-cloud Integration: Specifically Implementable Functions
- Case of Urban Traffic Management (Traffic Signal Optimization) Based on Vehicle-road-cloud Integration: Wuxi Public Transport Signal Priority
- Case of Urban Traffic Management (Traffic Signal Optimization) Based on Vehicle-road-cloud Integration: Beijing AI Signal-controlled Intersections
- Case of Urban Traffic Management (Traffic Signal Optimization) Based on Vehicle-road-cloud Integration: Hainan AI Smart Intersections
- Urban Traffic Management (Urban Governance and Emergency Response) Based on Vehicle-road-cloud Integration: Specifically Implemented Functions
- Case of Urban Traffic Management (Urban Governance and Emergency Response) Based on Vehicle-road-cloud Integration: Hunan Expressway Vehicle-road-cloud Innovation Application Platform
- Vehicle-road-cloud Integration in Urban Traffic Management (Cross-domain Data Interconnection): Architecture
- Vehicle-road-cloud Integration in Urban Traffic Management (Cross-domain Data Interconnection): Data Transmission Methods
- Case of Vehicle-road-cloud Integration in Urban Traffic Management (Traffic Decision Optimization): Hangzhou City Brain 3.0
- Capabilities of Major Vehicle-road-cloud Integration Suppliers in Urban Traffic Management
- 5.6 Application Scenario 4 of Vehicle-road-cloud Integration: Smart Parks
- Statistical Analysis of Smart Parks Based on Vehicle-road-cloud Integration
- Typical Application Case Based on Vehicle-road-cloud Integration: Chongqing Science City Autonomous Driving Demonstration Park
- Typical Application Case Based on Vehicle-road-cloud Integration: Construction Status of Suzhou Industrial Park's Around Jinji Lake Business District
- Typical Application Case Based on Vehicle-road-cloud Integration: Achievements of Cloud Control Platform Construction
- Vehicle Models Applied in Smart Parks Based on Vehicle-road-cloud Integration: Mining Trucks
- Vehicle Models Applied in Smart Parks Based on Vehicle-road-cloud Integration: JD Autonomous Light Trucks
- Chapter 6 Vehicle-road-cloud Integration System Integration Suppliers
- 6.1 Baidu
- Operations
- Vehicle-road-cloud Integration Layout
- Vehicle-road-cloud Integration Architecture
- Vehicle-side C-V2X Cooperation Cases
- Vehicle-side: Characteristics of Auto Cloud 3.0 System
- Vehicle-side: Auto Cloud 3.0 System Helps Upload Road-side Data to Vehicles
- Vehicle-side: Comparison between Auto Cloud 3.0 System and Auto Cloud 2.0 System
- Road-side: Comparison between Zhilu OS 2.0 and Zhilu OS 1.0
- Road-side: ACE Intelligent Intersection
- Cloud-side: Overall Architecture of Intelligent Transportation Engine 4.0
- Cloud-side: Traffic Large Model Architecture
- Vehicle-road-cloud Integration Vehicle-road-cloud Integration Application: Intelligent Signal Control
- Vehicle-road-cloud Integration Vehicle-road-cloud Integration Application: Low-speed Autonomous Vehicles
- Vehicle-road-cloud Integration Application: Intelligent Parking
- Vehicle-road-cloud Integration Application: Smart Highways
- 6.2 Huawei
- Operations
- Vehicle-road-cloud Integration Layout
- Vehicle-side: Hardware Product Lines
- Huawei Vehicle-side: V2X Chips
- Vehicle-side: V2X Modules
- Road-side: Hardware Product Lines
- Road-side: Technical Advantages of Vehicle-road-cloud Integration Harmony Intersection Intelligent Entity Joint Solution
- Road-side: Vehicle-road-cloud Integration Harmony Intersection Intelligent Entity Joint Solution
- Road-side: AI Ultra-low Light 5.0 Camera
- Road-side: Binocular Radar-vision Integrated Machine
- Road-side: Kunpeng + openEuler Hardware-software Collaborative Edge Computing Platform
- Road-side: Server Operating System of Kunpeng + openEuler Hardware-software Collaborative Edge Computing Platform
- Road-side: Application of Kunpeng + openEuler Hardware-software Collaborative Edge Computing Platform
- Vehicle-road-cloud Integration Architecture: Vehicle-road-cloud Integration Based on 5G-A
- 6.3 ZTE
- Operations
- Vehicle-road-cloud Integration Layout
- Vehicle-side: Hardware Product Lines
- Vehicle-side: Adoption of Self-developed Dual-band Chip Module 5G S1V
- Road-side: Hardware Product Lines
- Road-side: Virtual Roadside Unit
- Road-side: Integration Architecture of Communication, Perception and Computing
- Road-side: Integration of Communication and Computing Y2002
- Road-side Hardware (5G Road-side Computing Platform) - 1
- Road-side Hardware (5G Road-side Computing Platform) - 2
- Cloud-side: Digital Nebula Basic Platform
- Cloud-side: Nebula Large Model + DeepSeek
- 6.4 Tencent
- Operations
- Vehicle-road-cloud Integration Layout
- Road-side: Pan-V2X Road-side Collaborative Services
- Cloud-side: Technology Evolution
- Cloud-side: Tencent Cloud Full-stack AI Upgrade
- Vehicle-road-cloud-network Full-link Services
- 6.5 Alibaba
- Operations
- Vehicle-road-cloud Integration Layout
- Vehicle-side: 5G-OBU Intelligent Voice Device of TransInfo Technology Invested by Alibaba
- Road-side: RSU of TransInfo Technology Invested by Alibaba
- Cloud-side: Vehicle-road Coordination Solution Architecture
- Vehicle-road-cloud Integration: Highwayway Solution in Alibaba TransInfo Technology
- 6.6 Hik AI Link
- Vehicle-road-cloud Integration Layout
- Vehicle-side: VT-BOX
- Vehicle-side: Intelligent Terminal OBU
- Road-side: Zhilu Pioneer
- Road-side: Application Scenarios of Zhilu Pioneer
- Road-side: Hardware RSU
- Cloud-side: Intelligent Connected Cloud Control Basic Platform
- Cloud-side: I2V Operation Platform
- Vehicle-road-cloud Integration Solution: Smart Road Solution for Intelligent Vehicles
- Vehicle-road-cloud Integration Solution Effectively Improves Traffic Efficiency
- 6.7 Hikvision
- Operations
- Vehicle-road-cloud Integration Layout
- Road-side: New Generation Event Detection Series Products
- Road-side: Edge-end Products of New Generation Event Detection Series
- Road-side: Central-end Products of New Generation Event Detection Series
- Road-side: New Generation Event Detection Series Products Supported by Visual Large Model
- Road-side: Comparison between New Generation Event Detection Series Products and Previous Generation Products
- 6.8 Huali ISmartWays Technology
- Vehicle-road-cloud Integration Layout
- Vehicle-side: Hardware Product Lines
- Vehicle-side: Software Protocol Stack
- Road-side: Road-side Hardware
- Cloud-side: Cloud Control Platform
- Vehicle-road-cloud Integration: Industrial Cooperation Ecosystem
- 6.9 Tianan Zhilian
- Vehicle-road-cloud Integration Layout
- Vehicle-road-cloud Integration Application: Helping Wuxi Build a Benchmark City
- 6.10 CiDi
- Operations
- Main Product Lines
- Vehicle-road-cloud Integration Standard Construction
- Vehicle-road-cloud Integration Layout
- Vehicle-side: Hardware
- Road-side: Intelligent Connected Road Management System
- Road-side: Smart Intersection Solution
- 6.11 VanJee Technology
- Operations
- Vehicle-road-cloud Integration Layout
- Vehicle-side: Hardware Products
- Vehicle-side Hardware (1)
- Vehicle-side Hardware (2)
- Road-side: V2X (5G) Road-side Communication Terminal
- Road-side: Edge Computing Unit
- Road-side: Edge Computing Unit Base Iteration
- Road-side: V2X + 3D LiDAR Road-side Intelligent Perception Solution
- Road-side: Road-side 3D LiDAR
- Cloud-side: Intelligent Connected Cloud Control Platform
- Vehicle-road-cloud Integration Technical Base
- Vehicle-road-cloud Integration Application Scenarios
- Vehicle-road-cloud Integration Application: Overseas Expansion
- Vehicle-road-cloud Integration Case: Beijing Yizhuang Demonstration Zone
- Vehicle-road-cloud Integration Advantages: Low Cost and Good Performance
- Vehicle-road-cloud Integration Cooperation: Jointly Launched a Comprehensive Solution for Improving Traffic Safety Resilience with Xingyun Shuju
- 6.12 Genvict Technologies
- Operations
- Vehicle-road-cloud Integration Layout
- Vehicle-road-cloud Integration Full-stack Product System
- Vehicle-side: Hardware Technology Evolution
- Vehicle-side: Dual-mode V2X On-board Terminal
- Vehicle-side: Intelligent Voice OBU
- Road-side: Smart Intersection Holographic Perception Solution
- Road-side: Hardware Products
- Road-side: Multi-beam RSU
- Road-side: Applied for RSU Patent Based on NearLink Technology
- Road-side: Edge Computing MEC Technology Iteration
- Cloud-side: Digital Twin Traffic Platform
- Vehicle-road-cloud Integration Applications
- 6.13 Vision-Zenith TECH
- Vehicle-road-cloud Integration Solutions
- Vehicle-road-cloud Integration Hardware Layout
- Road-side: Ultra-low Latency Technical Solution of Video Stream + Structured Stream Dual Stream < 40ms
- Road-side: Realized Real-time Digital Twin Technology with Edge Computing
- Vehicle-road-cloud Integration Application: Building Holographic Traffic Scenery
- Vehicle-road-cloud Integration Application: Smart Parking Lot
- Vehicle-road-cloud Integration Application: Panoramic Perception of Smart Parking Lot
- Vehicle-road-cloud Integration Application Case: Shenzhen Airport P2 Parking Lot
- Major Partners
- 6.14 China Mobile Shanghai Industrial Research Institute
- Vehicle-road-cloud Integration Layout
- Road-side: 5G A Edge Device
- Road-side Edge Intelligent Computing
- Vehicle-road-cloud Integration Application Implementation Path
- Vehicle-road-cloud Integration Application Model Exploration (Operators and Governments Co-construct and Co-maintain Computing Network Infrastructure to Form a National Network Service)
- Vehicle-road-cloud Integration Application Model Exploration (Operators and Governments Explore Vehicle - City Intelligent Entity Interaction System) - 1
- Vehicle-road-cloud Integration Application Model Exploration (Operators and Governments Explore Vehicle - City Intelligent Entity Interaction System) - 2
- 6.15 CICT Connected and Intelligent Technologies (CICTCI)
- Operations
- Vehicle-road-cloud Integration Layout
- Vehicle-road-cloud Integration Product Line
- Vehicle-side C-V2X Modules (1)
- Vehicle-side C-V2X Modules (2)
- Vehicle-side C-V2X Fusion Intelligent Driving Domain Controller
- Parameters of Vehicle-side C-V2X Fusion Intelligent Driving Domain Controller
- Vehicle-side C-V2X Protocol Stack
- Parameters of Road-side RSU (1)
- Parameters of Road-side RSU (2)
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.