Artificial Intelligence In Drug Discovery Global Market Insights 2026, Analysis and Forecast to 2031
Description
Artificial Intelligence In Drug Discovery Market Summary
The Artificial Intelligence (AI) in drug discovery market represents a transformative frontier within the life sciences sector, shifting the pharmaceutical industry from a serendipity-based research model to a data-driven, predictive paradigm. This market encompasses the application of machine learning (ML), deep learning (DL), and generative AI to analyze vast biological and chemical datasets, aiming to identify novel drug targets, design potent molecular structures, and predict clinical success with unprecedented speed. The industry is characterized by its ability to address the ""Eroom’s Law"" phenomenon—the observation that drug discovery is becoming slower and more expensive over time—by significantly compressing the early-stage R&D timeline. For instance, AI-driven platforms can reduce the ""hit-to-lead"" phase from years to months, while lowering the high failure rate inherent in traditional drug development. The global Artificial Intelligence in Drug Discovery market is estimated to reach a valuation of approximately USD 1.0–3.0 billion in 2025, with compound annual growth rates (CAGR) projected in the range of 10.0%–20.0% through 2030. This growth is catalyzed by the rapid maturation of ""Generative Biology,"" the increasing availability of high-resolution multi-omics data, and a surge in cross-industry partnerships between technology titans and heritage biopharmaceutical firms.
Application Analysis and Market Segmentation
Pharmaceutical and Biotechnology Companies Pharmaceutical and biotech firms constitute the largest end-user segment, with an estimated annual growth rate of 12.0%–21.0%. Large-cap pharmaceutical companies are moving beyond pilot projects to integrate ""Agentic AI"" into their core R&D workflows, treating AI as a standard partner in lead optimization and toxicity prediction. Biotech firms, particularly those born ""AI-native,"" are leveraging these tools to build specialized pipelines in oncology and immunology, often achieving clinical-stage assets with a fraction of the headcount required by traditional peers.
Contract Research Organizations (CROs) The CRO segment is projected to grow by 9.0%–18.0% annually. To remain competitive, traditional CROs are rapidly acquiring AI capabilities to offer ""AI-as-a-Service"" (AIaaS). This allows smaller biotech companies to access advanced computational screenings without investing in high-performance computing (HPC) infrastructure. The trend here is toward ""In-Silico to In-Vitro"" integrated services, where AI predictions are immediately validated in automated robotic wet labs.
Academic and Research Institutes Academic institutions are expected to expand at a rate of 7.0%–15.0% per year. These entities are pivotal in developing the foundational algorithms and open-source models that the industry later commercializes. Collaborative initiatives between universities and industry players are focusing on ""Foundational Models"" for protein folding and RNA interactions, which serve as the bedrock for the next generation of therapeutic modalities.
Regional Market Distribution and Geographic Trends
North America North America currently leads the market, with a projected annual growth rate of 8.0%–18.0%. The region’s dominance is underpinned by the highest concentration of AI-native biotech startups, primarily in hubs like Cambridge (MA) and the San Francisco Bay Area. The U.S. market is characterized by massive venture capital inflows and a regulatory environment (FDA) that is actively engaging with manufacturers to define the ""Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device"" framework.
Asia-Pacific Asia-Pacific is the fastest-growing region, with estimated annual growth rates of 13.0%–24.0%. China is a major force, leveraging its vast digital health infrastructure and government-backed ""AI Plus"" initiatives to accelerate drug design. Japan and South Korea are also significant contributors, focusing on integrating AI with their robust robotics and automation industries to create fully autonomous drug discovery laboratories.
Europe The European market is estimated to grow by 9.0%–17.0% annually. Countries like the UK, Germany, and Switzerland are leading consumers. The UK, in particular, benefits from a strong synergy between the ""Golden Triangle"" universities and deep-tech firms. European market trends are heavily influenced by a focus on ""Explainable AI"" (XAI), ensuring that AI-driven discoveries meet the rigorous transparency standards required for clinical validation under regional health authorities.
Latin America and MEA Growth in Latin America and the Middle East & Africa is projected at 6.0%–15.0% annually. While smaller in scale, the Middle East is emerging as a niche hub, with countries like Saudi Arabia and the UAE investing in high-performance computing centers to support genomic research and personalized medicine as part of their national healthcare transformation visions.
Key Market Players and Competitive Landscape
The competitive landscape is a high-velocity ecosystem comprising ""AI-Native"" biotech pioneers, diversified tech giants, and strategic technology providers.
AI-Native Pioneers: Insilico Medicine and Recursion are at the forefront, both having successfully advanced AI-designed molecules into human clinical trials. Exscientia and BenevolentAI focus on end-to-end drug design, utilizing ""Centaur"" models that combine human expertise with automated reasoning. Atomwise Inc. and XtalPi Inc. are recognized for their superior molecular docking and crystal structure prediction capabilities, respectively. Specialized Therapeutic Developers: Healx and BioXcel Therapeutics Inc. focus on drug repurposing, using AI to find new indications for existing drugs, thereby bypassing early-phase safety trials. BostonGene Corporation and Owkin, Inc are leaders in precision oncology, utilizing federated learning to analyze sensitive patient data without compromising privacy. Technology Giants and Infrastructure Providers: IBM and Google (DeepMind) provide the foundational computational power and revolutionary models (such as AlphaFold) that have unlocked the structure of the human proteome. These players act as critical enabling partners for the entire industry. Innovative Research and Service Firms: Companies like Iktos S.A.S., Insitro, and Aitia are refining generative modeling and ""digital twin"" technologies to simulate complex disease biology. BPGbio Inc., BullFrog AI, and BioSymetrics, Inc. specialize in multi-omics data integration, while Innophore and Delta4.ai focus on niche target identification and enzyme discovery.
Industry Value Chain Analysis
The value chain for AI in drug discovery is a high-precision cycle that integrates data science with biological validation, shifting value from manual experimentation to predictive intelligence.
Data Acquisition and Curation (Upstream): The chain begins with the sourcing of high-quality ""Omics"" data (genomics, proteomics, metabolomics). Value is added by cleaning and standardizing unstructured data from EHRs, scientific literature, and historical clinical trials. The quality of this ""training data"" is the single most critical factor for the success of the downstream AI models.
Model Development and Training: This is the core technological stage. Engineers develop proprietary neural networks or generative adversarial networks (GANs) to model biological interactions. Value is created through the development of ""Inductive Bias""—programming the AI with enough chemical and physical laws so that it generates biologically plausible molecules rather than just random structures.
In-Silico Prediction and Lead Optimization: The AI platform screens millions of virtual compounds to identify ""hits"" and optimizes them for potency, solubility, and safety. This stage adds significant value by ""filtering out"" high-risk candidates before they ever reach a physical laboratory, saving millions in wasted experimental costs.
Wet-Lab Validation (Midstream): Predictions must be validated in the physical world. This stage involves high-content screening and robotic assays. Companies like Recursion operate massive automated labs that feed experimental results back into the AI to ""close the loop"" and refine the model’s accuracy.
Clinical Development and Licensing (Downstream): The final stage involves moving the AI-optimized candidate into clinical trials. Value is captured either through internal development or by licensing the asset to a ""Big Pharma"" partner. AI contributes here by identifying the right patient subgroups through biomarker analysis, thereby increasing the ""Probability of Technical and Regulatory Success"" (PoTRS).
Market Opportunities and Challenges
Opportunities The rise of ""Foundation Models for Biology"" offers a significant opportunity to democratize drug discovery, allowing smaller teams to design complex biologics like bi-specific antibodies or mRNA vaccines. There is also massive potential in ""Drug Repurposing,"" where AI can rapidly identify existing, safe drugs that can be used to treat emerging viral threats or rare diseases. Furthermore, the integration of ""Quantum Computing"" with AI-based drug discovery is an emerging frontier that could solve currently ""uncomputable"" problems in molecular dynamics and large-protein simulations.
Challenges ""Data Scarcity and Quality"" remain the primary bottlenecks; AI is only as good as the data it is trained on, and much of the world’s best biological data is siloed within private pharmaceutical archives. Additionally, ""Explainability and Regulatory Approval"" pose a major hurdle, as regulators are often hesitant to approve drugs where the underlying logic of the molecular design is a ""black box."" ""Computational Cost"" is another significant challenge, as training modern large-scale models requires immense GPU/TPU resources that are both expensive and environmentally taxing. Finally, the ""Talent Gap"" persists, as the industry requires a rare breed of ""bilingual"" professionals who are experts in both high-level data science and molecular biology.
The Artificial Intelligence (AI) in drug discovery market represents a transformative frontier within the life sciences sector, shifting the pharmaceutical industry from a serendipity-based research model to a data-driven, predictive paradigm. This market encompasses the application of machine learning (ML), deep learning (DL), and generative AI to analyze vast biological and chemical datasets, aiming to identify novel drug targets, design potent molecular structures, and predict clinical success with unprecedented speed. The industry is characterized by its ability to address the ""Eroom’s Law"" phenomenon—the observation that drug discovery is becoming slower and more expensive over time—by significantly compressing the early-stage R&D timeline. For instance, AI-driven platforms can reduce the ""hit-to-lead"" phase from years to months, while lowering the high failure rate inherent in traditional drug development. The global Artificial Intelligence in Drug Discovery market is estimated to reach a valuation of approximately USD 1.0–3.0 billion in 2025, with compound annual growth rates (CAGR) projected in the range of 10.0%–20.0% through 2030. This growth is catalyzed by the rapid maturation of ""Generative Biology,"" the increasing availability of high-resolution multi-omics data, and a surge in cross-industry partnerships between technology titans and heritage biopharmaceutical firms.
Application Analysis and Market Segmentation
Pharmaceutical and Biotechnology Companies Pharmaceutical and biotech firms constitute the largest end-user segment, with an estimated annual growth rate of 12.0%–21.0%. Large-cap pharmaceutical companies are moving beyond pilot projects to integrate ""Agentic AI"" into their core R&D workflows, treating AI as a standard partner in lead optimization and toxicity prediction. Biotech firms, particularly those born ""AI-native,"" are leveraging these tools to build specialized pipelines in oncology and immunology, often achieving clinical-stage assets with a fraction of the headcount required by traditional peers.
Contract Research Organizations (CROs) The CRO segment is projected to grow by 9.0%–18.0% annually. To remain competitive, traditional CROs are rapidly acquiring AI capabilities to offer ""AI-as-a-Service"" (AIaaS). This allows smaller biotech companies to access advanced computational screenings without investing in high-performance computing (HPC) infrastructure. The trend here is toward ""In-Silico to In-Vitro"" integrated services, where AI predictions are immediately validated in automated robotic wet labs.
Academic and Research Institutes Academic institutions are expected to expand at a rate of 7.0%–15.0% per year. These entities are pivotal in developing the foundational algorithms and open-source models that the industry later commercializes. Collaborative initiatives between universities and industry players are focusing on ""Foundational Models"" for protein folding and RNA interactions, which serve as the bedrock for the next generation of therapeutic modalities.
Regional Market Distribution and Geographic Trends
North America North America currently leads the market, with a projected annual growth rate of 8.0%–18.0%. The region’s dominance is underpinned by the highest concentration of AI-native biotech startups, primarily in hubs like Cambridge (MA) and the San Francisco Bay Area. The U.S. market is characterized by massive venture capital inflows and a regulatory environment (FDA) that is actively engaging with manufacturers to define the ""Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device"" framework.
Asia-Pacific Asia-Pacific is the fastest-growing region, with estimated annual growth rates of 13.0%–24.0%. China is a major force, leveraging its vast digital health infrastructure and government-backed ""AI Plus"" initiatives to accelerate drug design. Japan and South Korea are also significant contributors, focusing on integrating AI with their robust robotics and automation industries to create fully autonomous drug discovery laboratories.
Europe The European market is estimated to grow by 9.0%–17.0% annually. Countries like the UK, Germany, and Switzerland are leading consumers. The UK, in particular, benefits from a strong synergy between the ""Golden Triangle"" universities and deep-tech firms. European market trends are heavily influenced by a focus on ""Explainable AI"" (XAI), ensuring that AI-driven discoveries meet the rigorous transparency standards required for clinical validation under regional health authorities.
Latin America and MEA Growth in Latin America and the Middle East & Africa is projected at 6.0%–15.0% annually. While smaller in scale, the Middle East is emerging as a niche hub, with countries like Saudi Arabia and the UAE investing in high-performance computing centers to support genomic research and personalized medicine as part of their national healthcare transformation visions.
Key Market Players and Competitive Landscape
The competitive landscape is a high-velocity ecosystem comprising ""AI-Native"" biotech pioneers, diversified tech giants, and strategic technology providers.
AI-Native Pioneers: Insilico Medicine and Recursion are at the forefront, both having successfully advanced AI-designed molecules into human clinical trials. Exscientia and BenevolentAI focus on end-to-end drug design, utilizing ""Centaur"" models that combine human expertise with automated reasoning. Atomwise Inc. and XtalPi Inc. are recognized for their superior molecular docking and crystal structure prediction capabilities, respectively. Specialized Therapeutic Developers: Healx and BioXcel Therapeutics Inc. focus on drug repurposing, using AI to find new indications for existing drugs, thereby bypassing early-phase safety trials. BostonGene Corporation and Owkin, Inc are leaders in precision oncology, utilizing federated learning to analyze sensitive patient data without compromising privacy. Technology Giants and Infrastructure Providers: IBM and Google (DeepMind) provide the foundational computational power and revolutionary models (such as AlphaFold) that have unlocked the structure of the human proteome. These players act as critical enabling partners for the entire industry. Innovative Research and Service Firms: Companies like Iktos S.A.S., Insitro, and Aitia are refining generative modeling and ""digital twin"" technologies to simulate complex disease biology. BPGbio Inc., BullFrog AI, and BioSymetrics, Inc. specialize in multi-omics data integration, while Innophore and Delta4.ai focus on niche target identification and enzyme discovery.
Industry Value Chain Analysis
The value chain for AI in drug discovery is a high-precision cycle that integrates data science with biological validation, shifting value from manual experimentation to predictive intelligence.
Data Acquisition and Curation (Upstream): The chain begins with the sourcing of high-quality ""Omics"" data (genomics, proteomics, metabolomics). Value is added by cleaning and standardizing unstructured data from EHRs, scientific literature, and historical clinical trials. The quality of this ""training data"" is the single most critical factor for the success of the downstream AI models.
Model Development and Training: This is the core technological stage. Engineers develop proprietary neural networks or generative adversarial networks (GANs) to model biological interactions. Value is created through the development of ""Inductive Bias""—programming the AI with enough chemical and physical laws so that it generates biologically plausible molecules rather than just random structures.
In-Silico Prediction and Lead Optimization: The AI platform screens millions of virtual compounds to identify ""hits"" and optimizes them for potency, solubility, and safety. This stage adds significant value by ""filtering out"" high-risk candidates before they ever reach a physical laboratory, saving millions in wasted experimental costs.
Wet-Lab Validation (Midstream): Predictions must be validated in the physical world. This stage involves high-content screening and robotic assays. Companies like Recursion operate massive automated labs that feed experimental results back into the AI to ""close the loop"" and refine the model’s accuracy.
Clinical Development and Licensing (Downstream): The final stage involves moving the AI-optimized candidate into clinical trials. Value is captured either through internal development or by licensing the asset to a ""Big Pharma"" partner. AI contributes here by identifying the right patient subgroups through biomarker analysis, thereby increasing the ""Probability of Technical and Regulatory Success"" (PoTRS).
Market Opportunities and Challenges
Opportunities The rise of ""Foundation Models for Biology"" offers a significant opportunity to democratize drug discovery, allowing smaller teams to design complex biologics like bi-specific antibodies or mRNA vaccines. There is also massive potential in ""Drug Repurposing,"" where AI can rapidly identify existing, safe drugs that can be used to treat emerging viral threats or rare diseases. Furthermore, the integration of ""Quantum Computing"" with AI-based drug discovery is an emerging frontier that could solve currently ""uncomputable"" problems in molecular dynamics and large-protein simulations.
Challenges ""Data Scarcity and Quality"" remain the primary bottlenecks; AI is only as good as the data it is trained on, and much of the world’s best biological data is siloed within private pharmaceutical archives. Additionally, ""Explainability and Regulatory Approval"" pose a major hurdle, as regulators are often hesitant to approve drugs where the underlying logic of the molecular design is a ""black box."" ""Computational Cost"" is another significant challenge, as training modern large-scale models requires immense GPU/TPU resources that are both expensive and environmentally taxing. Finally, the ""Talent Gap"" persists, as the industry requires a rare breed of ""bilingual"" professionals who are experts in both high-level data science and molecular biology.
Table of Contents
115 Pages
- Chapter 1 Executive Summary
- Chapter 2 Abbreviation and Acronyms
- Chapter 3 Preface
- 3.1 Research Scope
- 3.2 Research Sources
- 3.2.1 Data Sources
- 3.2.2 Assumptions
- 3.3 Research Method
- Chapter Four Market Landscape
- 4.1 Market Overview
- 4.2 Classification/Types
- 4.3 Application/End Users
- Chapter 5 Market Trend Analysis
- 5.1 Introduction
- 5.2 Drivers
- 5.3 Restraints
- 5.4 Opportunities
- 5.5 Threats
- Chapter 6 Industry Chain Analysis
- 6.1 Upstream/Suppliers Analysis
- 6.2 Artificial Intelligence in Drug Discovery Analysis
- 6.2.1 Technology Analysis
- 6.2.2 Cost Analysis
- 6.2.3 Market Channel Analysis
- 6.3 Downstream Buyers/End Users
- Chapter 7 Latest Market Dynamics
- 7.1 Latest News
- 7.2 Merger and Acquisition
- 7.3 Planned/Future Project
- 7.4 Policy Dynamics
- Chapter 8 Historical and Forecast Artificial Intelligence in Drug Discovery Market in North America (2021-2031)
- 8.1 Artificial Intelligence in Drug Discovery Market Size
- 8.2 Artificial Intelligence in Drug Discovery Market by End Use
- 8.3 Competition by Players/Suppliers
- 8.4 Artificial Intelligence in Drug Discovery Market Size by Type
- 8.5 Key Countries Analysis
- 8.5.1 United States
- 8.5.2 Canada
- 9.5.3 Mexico
- Chapter 9 Historical and Forecast Artificial Intelligence in Drug Discovery Market in South America (2021-2031)
- 9.1 Artificial Intelligence in Drug Discovery Market Size
- 9.2 Artificial Intelligence in Drug Discovery Market by End Use
- 9.3 Competition by Players/Suppliers
- 9.4 Artificial Intelligence in Drug Discovery Market Size by Type
- 9.5 Key Countries Analysis
- Chapter 10 Historical and Forecast Artificial Intelligence in Drug Discovery Market in Asia & Pacific (2021-2031)
- 10.1 Artificial Intelligence in Drug Discovery Market Size
- 10.2 Artificial Intelligence in Drug Discovery Market by End Use
- 10.3 Competition by Players/Suppliers
- 10.4 Artificial Intelligence in Drug Discovery Market Size by Type
- 10.5 Key Countries Analysis
- 10.5.1 China
- 10.5.2 India
- 10.5.3 Japan
- 10.5.4 South Korea
- 10.5.5 Southest Asia
- 10.5.6 Australia & New Zealand
- Chapter 11 Historical and Forecast Artificial Intelligence in Drug Discovery Market in Europe (2021-2031)
- 11.1 Artificial Intelligence in Drug Discovery Market Size
- 11.2 Artificial Intelligence in Drug Discovery Market by End Use
- 11.3 Competition by Players/Suppliers
- 11.4 Artificial Intelligence in Drug Discovery Market Size by Type
- 11.5 Key Countries Analysis
- 11.5.1 Germany
- 11.5.2 France
- 11.5.3 United Kingdom
- 11.5.4 Italy
- 11.5.5 Spain
- 11.5.6 Belgium
- 11.5.7 Netherlands
- 11.5.8 Austria
- 11.5.9 Poland
- 11.5.10 Northern Europe
- Chapter 12 Historical and Forecast Artificial Intelligence in Drug Discovery Market in MEA (2021-2031)
- 12.1 Artificial Intelligence in Drug Discovery Market Size
- 12.2 Artificial Intelligence in Drug Discovery Market by End Use
- 12.3 Competition by Players/Suppliers
- 12.4 Artificial Intelligence in Drug Discovery Market Size by Type
- 12.5 Key Countries Analysis
- Chapter 13 Summary For Global Artificial Intelligence in Drug Discovery Market (2021-2026)
- 13.1 Artificial Intelligence in Drug Discovery Market Size
- 13.2 Artificial Intelligence in Drug Discovery Market by End Use
- 13.3 Competition by Players/Suppliers
- 13.4 Artificial Intelligence in Drug Discovery Market Size by Type
- Chapter 14 Global Artificial Intelligence in Drug Discovery Market Forecast (2026-2031)
- 14.1 Artificial Intelligence in Drug Discovery Market Size Forecast
- 14.2 Artificial Intelligence in Drug Discovery Application Forecast
- 14.3 Competition by Players/Suppliers
- 14.4 Artificial Intelligence in Drug Discovery Type Forecast
- Chapter 15 Analysis of Global Key Vendors
- 15.1 Insilico Medicine
- 15.1.1 Company Profile
- 15.1.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.1.3 SWOT Analysis of Insilico Medicine
- 15.1.4 Insilico Medicine Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.2 Recursion
- 15.2.1 Company Profile
- 15.2.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.2.3 SWOT Analysis of Recursion
- 15.2.4 Recursion Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.3 Exscientia
- 15.3.1 Company Profile
- 15.3.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.3.3 SWOT Analysis of Exscientia
- 15.3.4 Exscientia Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.4 Atomwise Inc.
- 15.4.1 Company Profile
- 15.4.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.4.3 SWOT Analysis of Atomwise Inc.
- 15.4.4 Atomwise Inc. Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.5 BenevolentAI
- 15.5.1 Company Profile
- 15.5.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.5.3 SWOT Analysis of BenevolentAI
- 15.5.4 BenevolentAI Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.6 Healx
- 15.6.1 Company Profile
- 15.6.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.6.3 SWOT Analysis of Healx
- 15.6.4 Healx Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.7 BostonGene Corporation
- 15.7.1 Company Profile
- 15.7.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.7.3 SWOT Analysis of BostonGene Corporation
- 15.7.4 BostonGene Corporation Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.8 Innophore
- 15.8.1 Company Profile
- 15.8.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.8.3 SWOT Analysis of Innophore
- 15.8.4 Innophore Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.9 XtalPi Inc.
- 15.9.1 Company Profile
- 15.9.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.9.3 SWOT Analysis of XtalPi Inc.
- 15.9.4 XtalPi Inc. Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.10 Delta4.ai
- 15.10.1 Company Profile
- 15.10.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.10.3 SWOT Analysis of Delta4.ai
- 15.10.4 Delta4.ai Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.11 BullFrog AI Holdings
- 15.11.1 Company Profile
- 15.11.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.11.3 SWOT Analysis of BullFrog AI Holdings
- 15.11.4 BullFrog AI Holdings Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.12 Inc.
- 15.12.1 Company Profile
- 15.12.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.12.3 SWOT Analysis of Inc.
- 15.12.4 Inc. Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.13 BioXcel Therapeutics Inc.
- 15.13.1 Company Profile
- 15.13.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.13.3 SWOT Analysis of BioXcel Therapeutics Inc.
- 15.13.4 BioXcel Therapeutics Inc. Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- 15.14 Graphwise
- 15.14.1 Company Profile
- 15.14.2 Main Business and Artificial Intelligence in Drug Discovery Information
- 15.14.3 SWOT Analysis of Graphwise
- 15.14.4 Graphwise Artificial Intelligence in Drug Discovery Revenue, Gross Margin and Market Share (2021-2026)
- Please ask for sample pages for full companies list
- Tables and Figures
- Table Abbreviation and Acronyms
- Table Research Scope of Artificial Intelligence in Drug Discovery Report
- Table Data Sources of Artificial Intelligence in Drug Discovery Report
- Table Major Assumptions of Artificial Intelligence in Drug Discovery Report
- Figure Market Size Estimated Method
- Figure Major Forecasting Factors
- Figure Artificial Intelligence in Drug Discovery Picture
- Table Artificial Intelligence in Drug Discovery Classification
- Table Artificial Intelligence in Drug Discovery Applications
- Table Drivers of Artificial Intelligence in Drug Discovery Market
- Table Restraints of Artificial Intelligence in Drug Discovery Market
- Table Opportunities of Artificial Intelligence in Drug Discovery Market
- Table Threats of Artificial Intelligence in Drug Discovery Market
- Table Raw Materials Suppliers
- Table Different Production Methods of Artificial Intelligence in Drug Discovery
- Table Cost Structure Analysis of Artificial Intelligence in Drug Discovery
- Table Key End Users
- Table Latest News of Artificial Intelligence in Drug Discovery Market
- Table Merger and Acquisition
- Table Planned/Future Project of Artificial Intelligence in Drug Discovery Market
- Table Policy of Artificial Intelligence in Drug Discovery Market
- Table 2021-2031 North America Artificial Intelligence in Drug Discovery Market Size
- Figure 2021-2031 North America Artificial Intelligence in Drug Discovery Market Size and CAGR
- Table 2021-2031 North America Artificial Intelligence in Drug Discovery Market Size by Application
- Table 2021-2026 North America Artificial Intelligence in Drug Discovery Key Players Revenue
- Table 2021-2026 North America Artificial Intelligence in Drug Discovery Key Players Market Share
- Table 2021-2031 North America Artificial Intelligence in Drug Discovery Market Size by Type
- Table 2021-2031 United States Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Canada Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Mexico Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 South America Artificial Intelligence in Drug Discovery Market Size
- Figure 2021-2031 South America Artificial Intelligence in Drug Discovery Market Size and CAGR
- Table 2021-2031 South America Artificial Intelligence in Drug Discovery Market Size by Application
- Table 2021-2026 South America Artificial Intelligence in Drug Discovery Key Players Revenue
- Table 2021-2026 South America Artificial Intelligence in Drug Discovery Key Players Market Share
- Table 2021-2031 South America Artificial Intelligence in Drug Discovery Market Size by Type
- Table 2021-2031 Asia & Pacific Artificial Intelligence in Drug Discovery Market Size
- Figure 2021-2031 Asia & Pacific Artificial Intelligence in Drug Discovery Market Size and CAGR
- Table 2021-2031 Asia & Pacific Artificial Intelligence in Drug Discovery Market Size by Application
- Table 2021-2026 Asia & Pacific Artificial Intelligence in Drug Discovery Key Players Revenue
- Table 2021-2026 Asia & Pacific Artificial Intelligence in Drug Discovery Key Players Market Share
- Table 2021-2031 Asia & Pacific Artificial Intelligence in Drug Discovery Market Size by Type
- Table 2021-2031 China Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 India Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Japan Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 South Korea Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Southeast Asia Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Australia & New Zealand Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Europe Artificial Intelligence in Drug Discovery Market Size
- Figure 2021-2031 Europe Artificial Intelligence in Drug Discovery Market Size and CAGR
- Table 2021-2031 Europe Artificial Intelligence in Drug Discovery Market Size by Application
- Table 2021-2026 Europe Artificial Intelligence in Drug Discovery Key Players Revenue
- Table 2021-2026 Europe Artificial Intelligence in Drug Discovery Key Players Market Share
- Table 2021-2031 Europe Artificial Intelligence in Drug Discovery Market Size by Type
- Table 2021-2031 Germany Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 France Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 United Kingdom Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Italy Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Spain Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Belgium Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Netherlands Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Austria Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Poland Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 Northern Europe Artificial Intelligence in Drug Discovery Market Size
- Table 2021-2031 MEA Artificial Intelligence in Drug Discovery Market Size
- Figure 2021-2031 MEA Artificial Intelligence in Drug Discovery Market Size and CAGR
- Table 2021-2031 MEA Artificial Intelligence in Drug Discovery Market Size by Application
- Table 2021-2026 MEA Artificial Intelligence in Drug Discovery Key Players Revenue
- Table 2021-2026 MEA Artificial Intelligence in Drug Discovery Key Players Market Share
- Table 2021-2031 MEA Artificial Intelligence in Drug Discovery Market Size by Type
- Table 2021-2026 Global Artificial Intelligence in Drug Discovery Market Size by Region
- Table 2021-2026 Global Artificial Intelligence in Drug Discovery Market Size Share by Region
- Table 2021-2026 Global Artificial Intelligence in Drug Discovery Market Size by Application
- Table 2021-2026 Global Artificial Intelligence in Drug Discovery Market Share by Application
- Table 2021-2026 Global Artificial Intelligence in Drug Discovery Key Vendors Revenue
- Figure 2021-2026 Global Artificial Intelligence in Drug Discovery Market Size and Growth Rate
- Table 2021-2026 Global Artificial Intelligence in Drug Discovery Key Vendors Market Share
- Table 2021-2026 Global Artificial Intelligence in Drug Discovery Market Size by Type
- Table 2021-2026 Global Artificial Intelligence in Drug Discovery Market Share by Type
- Table 2026-2031 Global Artificial Intelligence in Drug Discovery Market Size by Region
- Table 2026-2031 Global Artificial Intelligence in Drug Discovery Market Size Share by Region
- Table 2026-2031 Global Artificial Intelligence in Drug Discovery Market Size by Application
- Table 2026-2031 Global Artificial Intelligence in Drug Discovery Market Share by Application
- Table 2026-2031 Global Artificial Intelligence in Drug Discovery Key Vendors Revenue
- Figure 2026-2031 Global Artificial Intelligence in Drug Discovery Market Size and Growth Rate
- Table 2026-2031 Global Artificial Intelligence in Drug Discovery Key Vendors Market Share
- Table 2026-2031 Global Artificial Intelligence in Drug Discovery Market Size by Type
- Table 2026-2031 Artificial Intelligence in Drug Discovery Global Market Share by Type
- Table Insilico Medicine Information
- Table SWOT Analysis of Insilico Medicine
- Table 2021-2026 Insilico Medicine Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 Insilico Medicine Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 Insilico Medicine Artificial Intelligence in Drug Discovery Market Share
- Table Recursion Information
- Table SWOT Analysis of Recursion
- Table 2021-2026 Recursion Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 Recursion Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 Recursion Artificial Intelligence in Drug Discovery Market Share
- Table Exscientia Information
- Table SWOT Analysis of Exscientia
- Table 2021-2026 Exscientia Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 Exscientia Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 Exscientia Artificial Intelligence in Drug Discovery Market Share
- Table Atomwise Inc. Information
- Table SWOT Analysis of Atomwise Inc.
- Table 2021-2026 Atomwise Inc. Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 Atomwise Inc. Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 Atomwise Inc. Artificial Intelligence in Drug Discovery Market Share
- Table BenevolentAI Information
- Table SWOT Analysis of BenevolentAI
- Table 2021-2026 BenevolentAI Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 BenevolentAI Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 BenevolentAI Artificial Intelligence in Drug Discovery Market Share
- Table Healx Information
- Table SWOT Analysis of Healx
- Table 2021-2026 Healx Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 Healx Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 Healx Artificial Intelligence in Drug Discovery Market Share
- Table BostonGene Corporation Information
- Table SWOT Analysis of BostonGene Corporation
- Table 2021-2026 BostonGene Corporation Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 BostonGene Corporation Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 BostonGene Corporation Artificial Intelligence in Drug Discovery Market Share
- Table Innophore Information
- Table SWOT Analysis of Innophore
- Table 2021-2026 Innophore Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 Innophore Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 Innophore Artificial Intelligence in Drug Discovery Market Share
- Table XtalPi Inc. Information
- Table SWOT Analysis of XtalPi Inc.
- Table 2021-2026 XtalPi Inc. Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 XtalPi Inc. Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 XtalPi Inc. Artificial Intelligence in Drug Discovery Market Share
- Table Delta4.ai Information
- Table SWOT Analysis of Delta4.ai
- Table 2021-2026 Delta4.ai Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 Delta4.ai Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 Delta4.ai Artificial Intelligence in Drug Discovery Market Share
- Table BullFrog AI Holdings Information
- Table SWOT Analysis of BullFrog AI Holdings
- Table 2021-2026 BullFrog AI Holdings Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 BullFrog AI Holdings Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 BullFrog AI Holdings Artificial Intelligence in Drug Discovery Market Share
- Table Inc. Information
- Table SWOT Analysis of Inc.
- Table 2021-2026 Inc. Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 Inc. Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 Inc. Artificial Intelligence in Drug Discovery Market Share
- Table BioXcel Therapeutics Inc. Information
- Table SWOT Analysis of BioXcel Therapeutics Inc.
- Table 2021-2026 BioXcel Therapeutics Inc. Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 BioXcel Therapeutics Inc. Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 BioXcel Therapeutics Inc. Artificial Intelligence in Drug Discovery Market Share
- Table Graphwise Information
- Table SWOT Analysis of Graphwise
- Table 2021-2026 Graphwise Artificial Intelligence in Drug Discovery Revenue Gross Profit Margin
- Figure 2021-2026 Graphwise Artificial Intelligence in Drug Discovery Revenue and Growth Rate
- Figure 2021-2026 Graphwise Artificial Intelligence in Drug Discovery Market Share
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.


