2026 Global: Artificial Intelligence (Ai) In Oil And Gas Market -Competitive Review (2032) report
Description
The 2026 Global: Artificial Intelligence (Ai) In Oil And Gas Market -Competitive Review (2031) report features the global market size and projected growth/decline data for the period 2021 through 2032. The report primarily provides an examination of the business strategies for the ten largest global companies in the market and how their strategies differ.
Perry/Hope Partners' reports provide the most accurate industry forecasts based on our proprietary economic models. Our forecasts project the product market size nationally and by regions for 2021 to 2032 using regression analysis in our modeling. and Perry/Hope is the only market research publisher that utilizes both longitudinal (historical) and vertical (from market section to market division to market class) analysis, since we study every manufactured product in the countries we analyze. The report also provides written analysis on the market definition, market segments, and SWOT analysis (market strengths, weaknesses, opportunities, and threats).
The market study aims at estimating the market size and the growth potential of this market. Topics analyzed within the report include a detailed breakdown of the global markets for artificial intelligence (ai) in oil and gas market by geography and historical trend. The scope of the report extends to sizing of the artificial intelligence (ai) in oil and gas market market and global market trends with market data for 2024 as the base year, 2025 and 2026 as the estimate years with projection of CAGR from 2027 to 2032.
The report also features a list of the top ten largest global players in the market. A review of each company includes 1) an estimate of the market share, 2) a listing of the products and/or services in the market, and 3) the features of these products and/or services in the market. The report has a chapter on Comparative Business Strategies for the largest four players. An example of the Comparative Business Strategies analysis would be -- How does Netflix's business strategy to expand its market share in the global online streaming compare to Amazon Prime's business strategy through its video products and services?
The ten market players in this report and a brief synopsis of their participation in the market are:
ExxonMobil, Shell, Chevron, BP, and TotalEnergies are among the largest and most active companies applying artificial intelligence across upstream, midstream, and downstream operations, investing in predictive maintenance, reservoir modeling, and production optimization to reduce downtime and improve recovery efficiency; ExxonMobil has integrated AI/ML into seismic interpretation and drilling optimization programs while Shell leverages digital twins and advanced analytics across its value chain to support energy transition goals. Chevron concentrates on data-driven operations in major basins such as the Permian, using AI to optimize production and carbon-capture workflows, and BP deploys machine learning for predictive asset management and refined-systems optimization as part of its broader digital transformation. TotalEnergies has prioritized AI-enabled process control and emissions monitoring tied to its sustainability commitments, often partnering with software vendors and cloud providers to scale analytics from edge devices to enterprise systems.
Siemens, ABB, Emerson (including AspenTech integrations), and Honeywell supply the industrial AI platforms, distributed control systems, and edge-to-cloud architectures that underpin many oil and gas AI deployments, offering digital twins, anomaly detection, and process optimization suites tailored for refineries, LNG plants, and offshore platforms. Siemens and ABB combine control systems with machine learning modules for predictive maintenance and autonomous operations while Emerson’s Plantweb and AspenTech capabilities create an integrated data fabric used for real-time decisioning and APM (asset performance management). Honeywell brings process control, IIoT connectivity, and AI-based safety analytics to complex facilities, enabling condition-based maintenance and operator-assist applications that reduce unplanned outages and safety incidents.
Microsoft, GE Digital, and specialized AI firms such as AIQ (ADNOC–G42 joint venture) and boutique solution providers accelerate enterprise adoption by delivering cloud AI, industrial analytics, and domain-focused machine learning models for seismic interpretation, reservoir intelligence, and supply‑chain optimization; Microsoft’s Azure AI and Copilot integrations support predictive maintenance and low-code operational apps while GE Digital’s Predix/APM and edge analytics focus on equipment reliability and performance at scale. AIQ and other sector-focused integrators deploy end‑to‑end platforms—from edge sensing to cloud orchestration—addressing drilling automation, HSE monitoring, and production forecasting with industry-specific training data and governance frameworks that help operators convert pilots into production-grade AI systems.
Perry/Hope Partners' reports provide the most accurate industry forecasts based on our proprietary economic models. Our forecasts project the product market size nationally and by regions for 2021 to 2032 using regression analysis in our modeling. and Perry/Hope is the only market research publisher that utilizes both longitudinal (historical) and vertical (from market section to market division to market class) analysis, since we study every manufactured product in the countries we analyze. The report also provides written analysis on the market definition, market segments, and SWOT analysis (market strengths, weaknesses, opportunities, and threats).
The market study aims at estimating the market size and the growth potential of this market. Topics analyzed within the report include a detailed breakdown of the global markets for artificial intelligence (ai) in oil and gas market by geography and historical trend. The scope of the report extends to sizing of the artificial intelligence (ai) in oil and gas market market and global market trends with market data for 2024 as the base year, 2025 and 2026 as the estimate years with projection of CAGR from 2027 to 2032.
The report also features a list of the top ten largest global players in the market. A review of each company includes 1) an estimate of the market share, 2) a listing of the products and/or services in the market, and 3) the features of these products and/or services in the market. The report has a chapter on Comparative Business Strategies for the largest four players. An example of the Comparative Business Strategies analysis would be -- How does Netflix's business strategy to expand its market share in the global online streaming compare to Amazon Prime's business strategy through its video products and services?
The ten market players in this report and a brief synopsis of their participation in the market are:
ExxonMobil, Shell, Chevron, BP, and TotalEnergies are among the largest and most active companies applying artificial intelligence across upstream, midstream, and downstream operations, investing in predictive maintenance, reservoir modeling, and production optimization to reduce downtime and improve recovery efficiency; ExxonMobil has integrated AI/ML into seismic interpretation and drilling optimization programs while Shell leverages digital twins and advanced analytics across its value chain to support energy transition goals. Chevron concentrates on data-driven operations in major basins such as the Permian, using AI to optimize production and carbon-capture workflows, and BP deploys machine learning for predictive asset management and refined-systems optimization as part of its broader digital transformation. TotalEnergies has prioritized AI-enabled process control and emissions monitoring tied to its sustainability commitments, often partnering with software vendors and cloud providers to scale analytics from edge devices to enterprise systems.
Siemens, ABB, Emerson (including AspenTech integrations), and Honeywell supply the industrial AI platforms, distributed control systems, and edge-to-cloud architectures that underpin many oil and gas AI deployments, offering digital twins, anomaly detection, and process optimization suites tailored for refineries, LNG plants, and offshore platforms. Siemens and ABB combine control systems with machine learning modules for predictive maintenance and autonomous operations while Emerson’s Plantweb and AspenTech capabilities create an integrated data fabric used for real-time decisioning and APM (asset performance management). Honeywell brings process control, IIoT connectivity, and AI-based safety analytics to complex facilities, enabling condition-based maintenance and operator-assist applications that reduce unplanned outages and safety incidents.
Microsoft, GE Digital, and specialized AI firms such as AIQ (ADNOC–G42 joint venture) and boutique solution providers accelerate enterprise adoption by delivering cloud AI, industrial analytics, and domain-focused machine learning models for seismic interpretation, reservoir intelligence, and supply‑chain optimization; Microsoft’s Azure AI and Copilot integrations support predictive maintenance and low-code operational apps while GE Digital’s Predix/APM and edge analytics focus on equipment reliability and performance at scale. AIQ and other sector-focused integrators deploy end‑to‑end platforms—from edge sensing to cloud orchestration—addressing drilling automation, HSE monitoring, and production forecasting with industry-specific training data and governance frameworks that help operators convert pilots into production-grade AI systems.
Table of Contents
32 Pages
- 1.0 Scope of Report and Methodology
- 2.0 Market SWOT Analysis and Players
- 2.1 Market Definition
- 2.2 Market Segments
- 2.3 Market Strengths
- 2.4 Market Weaknesses
- 2.5 Market Threats
- 2.6 Market Opportunities
- 2.7 Major Players
- 3.0 Competitive Analysis
- 3.1 Market Player 1
- 3.2 Market Player 2
- 3.3 Market Player 3
- 3.4 Market Player 4
- 3.5 Market Player 5
- 3.6 Market Player 6
- 3.7 Market Player 7
- 3.8 Market Player 8
- 3.9 Market Player 9
- 3.10 Market Player 10
- 4.0 Comparative Business Strategies
- 4.1 Comparative Business Strategies of Player 1 and 2
- 4.2 Comparative Business Strategies of Player 1 and 3
- 4.3 Comparative Business Strategies of Player 1 and 4
- 4.4 Comparative Business Strategies of Player 2 and 3
- 4.5 Comparative Business Strategies of Player 2 and 4
- 4.6 Comparative Business Strategies of Player 3 and 4
- 5.0 Appendix
Search Inside Report
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.
