Report cover image

Artificial Intelligence in Cancer Diagnostics Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2025-2034

Published Nov 12, 2025
Length 120 Pages
SKU # GMI20613839

Description

The Global Artificial Intelligence in Cancer Diagnostics Market was valued at USD 390 million in 2024 and is estimated to grow at a CAGR of 23.7% to reach USD 3.02 billion by 2034.

The market growth is driven by the accelerating adoption of AI-powered tools that enhance early cancer detection, automate clinical workflows, and reduce diagnostic errors. Increasing cancer prevalence globally, coupled with the urgent need for faster and more accurate diagnostic pathways, is pushing healthcare providers toward advanced machine learning platforms, deep-learning algorithms, and multimodal diagnostic systems. AI technologies are reshaping oncology by improving imaging accuracy, enabling real-time tumor segmentation, supporting pathology automation, and strengthening clinical decision support systems. As healthcare systems transition toward precision medicine and digitized diagnostics, AI continues to play an essential role in improving patient outcomes while reducing clinical workload and overall treatment delays.

The breast cancer segment accounted for USD 185.5 million in 2024, making it one of the most significant application areas in the Artificial Intelligence in Cancer Diagnostics Market due to the high global prevalence of breast tumors and the critical need for early, accurate detection. AI-enabled mammography, MRI, and ultrasound platforms are rapidly being adopted to identify subtle lesions, microcalcifications, and early-stage abnormalities with higher precision than conventional screening.

The hospitals segment generated USD 244.2 million in 2024, owing to the rapid incorporation of AI-driven imaging and pathology solutions into clinical workflows. Hospitals increasingly rely on AI tools to manage heavy imaging volumes, accelerate diagnostic turnaround times, and reduce variability in cancer interpretation across radiologists and oncologists. AI-powered systems support automated triaging, early tumor detection, integrated reporting, and real-time clinical decision support, significantly improving patient care efficiency.

North America Artificial Intelligence in Cancer Diagnostics Market generated USD 154.5 million in 2024, supported by strong healthcare AI infrastructure, early technology adoption, and significant investment from hospitals, diagnostic centers, and research institutions. The region benefits from continuous regulatory support, favorable reimbursement for AI-enabled diagnostics, and the presence of leading AI technology providers and cancer research centers. Rapid integration of AI into radiology, pathology, and genomics, combined with expanding collaborations among tech companies, pharmaceutical firms, and medical institutions, positions North America as the global hub for innovation in AI-driven cancer diagnostics.

Key players in the Artificial Intelligence in Cancer Diagnostics Market include Google Health, IBM Watson Health, Siemens Healthineers, GE Healthcare, Philips Healthcare, PathAI, Tempus, Freenome, Paige, Ibex Medical Analytics, and Arterys. Companies in the Artificial Intelligence in Cancer Diagnostics Market strengthen their market presence by investing heavily in deep learning models, multimodal diagnostic platforms, and large clinical dataset acquisition to improve algorithm accuracy. Many firms develop integrated imaging–pathology systems that combine radiology, digital pathology, and genomic insights for comprehensive cancer diagnostics. Strategic collaborations with hospitals, research institutes, and pharmaceutical companies help refine AI tools using real-world clinical data, ensuring higher reliability and regulatory approval success rates. Leading players focus on cloud-based deployment, enabling scalable and cost-efficient diagnostic access across large healthcare networks.

Table of Contents

120 Pages
Chapter 1 Methodology
1.1 Industry coverage
1.2 Market scope and definitions
1.3 Research design
1.4 Market size estimates and calculations
1.4.1 Approach 1: Bottom-up approach
1.4.2 Approach 2: Investor presentation
1.4.3 Approach 3: Parent market analysis
1.5 Key trends for market estimates
1.6 Forecast
1.7 Primary research & validation
1.7.1 Primary sources
1.7.2 Data mining sources
1.7.2.1 Paid sources
1.7.2.2 Public sources
Chapter 2 Executive Summary
2.1 Industry 3600 synopsis
2.1.1 Business trends
2.1.2 Regional trends
2.1.3 Component trends
2.1.4 Cancer type trends
2.1.5 End use trends
2.2 CXO perspectives: Strategic imperatives
2.3 Future outlook and strategic recommendations
Chapter 3 Industry Insights
3.1 Industry ecosystem analysis
3.2 Industry impact forces
3.2.1 Growth drivers
3.2.1.1 Rising cancer incidence globally
3.2.1.2 Advancements in AI technologies and imaging systems
3.2.1.3 Integration of AI with healthcare IT systems
3.2.2 Industry pitfalls and challenges
3.2.2.1 High implementation and operational costs
3.2.2.2 Concerns over data privacy and security
3.3 Growth potential analysis
3.3.1 By component
3.3.2 By cancer type
3.3.3 By end use
3.4 Regulatory landscape
3.4.1 North America
3.4.2 Europe
3.5 Trump administration tariffs
3.6 Future market trends
3.7 Porter's analysis
3.8 PESTEL analysis
Chapter 4 Competitive Landscape
4.1 Introduction
4.1.1 GE Healthcare
4.1.2 Microsoft
4.1.3 Siemens Healthineers
4.2 Company matrix analysis
4.3 Competitive analysis of major market players
4.4 Competitive positioning matrix
4.5 Strategy dashboard, 2024
Chapter 5 Artificial Intelligence in Cancer Diagnostics Market, By Component
5.1 Software solutions
5.2 Services
Chapter 6 Artificial Intelligence in Cancer Diagnostics Market, By Cancer Type
6.1 Breast cancer
6.2 Lung cancer
6.3 Colorectal cancer
6.4 Prostate cancer
6.5 Other cancer types
Chapter 7 Artificial Intelligence in Cancer Diagnostics Market, By End Use
7.1 Hospitals
7.2 Diagnostic laboratories
7.3 Other end users
Chapter 8 Artificial Intelligence in Cancer Diagnostics Market, By Region
8.1 North America
8.2 Europe
8.3 Asia Pacific
8.4 Latin America
8.5 Middle East and Africa
Chapter 9 Company Profiles
9.1 Cancer Center.ai
9.1.1 Financial data
9.1.2 Product landscape
9.1.3 Strategic outlook
9.1.4 SWOT analysis
9.2 DeepHealth (RadNet)
9.2.1 Financial data
9.2.1.1 Sales revenue, 2021-2024 (USD Million)
9.2.2 Product landscape
9.2.3 Strategic outlook
9.2.4 SWOT analysis
9.3 Early Sign
9.3.1 Financial data
9.3.2 Product landscape
9.3.3 Strategic outlook
9.3.4 SWOT analysis
9.4 GE HealthCare
9.4.1 Financial data
9.4.1.1 Sales revenue, 2021-2024 (USD Million)
9.4.2 Product landscape
9.4.3 Strategic outlook
9.4.4 SWOT analysis
9.5 Ibex Medical Analytics
9.5.1 Financial data
9.5.2 Product landscape
9.5.3 SWOT analysis
9.6 Microsoft
9.6.1 Financial data
9.6.1.1 Sales revenue, 2021-2024 (USD Million)
9.6.2 Product landscape
9.6.3 Strategic outlook
9.6.4 SWOT analysis
9.7 Path AI
9.7.1 Financial data
9.7.2 Product landscape
9.7.3 Strategic outlook
9.7.4 SWOT analysis
9.8 Qure.ai
9.8.1 Financial data
9.8.2 Product landscape
9.8.3 Strategic outlook
9.8.4 SWOT analysis
9.9 ScreenPoint Medical
9.9.1 Financial data
9.9.2 Product landscape
9.9.3 Strategic outlook
9.9.4 SWOT analysis
9.10 Siemens Healthineers
9.10.1 Financial data
9.10.1.1 Sales revenue, 2021-2024 (USD Million)
9.10.2 Product landscape
9.10.3 Strategic outlook
9.10.4 SWOT analysis
9.11 SkinVision
9.11.1 Financial data
9.11.2 Product landscape
9.11.3 Strategic outlook
9.11.4 SWOT analysis
9.12 Tempus
9.12.1 Financial data
9.12.1.1 Sales revenue, 2021-2024 (USD Million)
9.12.2 Product landscape
9.12.3 Strategic outlook
9.12.4 SWOT analysis
9.13 Therapixel
9.13.1 Financial data
9.13.2 Product landscape
9.13.3 Strategic outlook
9.13.4 SWOT analysis
9.14 Vuno
9.14.1 Financial data
9.14.1.1 Sales revenue, 2021-2024 (USD Million)
9.14.2 Product landscape
9.14.3 SWOT analysis

Search Inside Report

How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.