Report cover image

Artificial Intelligence in Drug Discovery Market in India

Published Jan 01, 2024
Length 48 Pages
SKU # NBS20462155

Description

In India's drug discovery field, AI utilizes advanced computational techniques to expedite various stages of drug development. AI is pivotal in deciphering intricate biological data, simplifying target identification, and enhancing lead compound searches. The incorporation of machine learning, deep learning, and natural language processing enables the analysis of vast datasets, facilitating predictive modelling for personalized medicine, drug interactions, and biomarker discovery.

Market insights:

The Indian market for artificial intelligence (AI) in drug discovery is projected to grow to INR 2,576.90 Bn by 2028, with a compound annual growth rate (CAGR) of 30.82% from 2023 to 2028. AI is poised to become a lucrative technology in healthcare, filling the research and development gap in drug manufacturing and enhancing targeted drug production. As a result, biopharmaceutical companies are increasingly embracing AI to bolster their market presence.

Market drivers:

The rising prevalence of chronic diseases, such as heart disease, diabetes, cancer, and neurological disorders, underscores the growing healthcare burden, necessitating prolonged treatment. Drug discovery plays a pivotal role in identifying effective therapies for these conditions, with AI, particularly leveraging machine learning and deep learning applications, meeting this demand by efficiently analyzing extensive datasets encompassing genomics, proteomics, and clinical data. As technologies evolve, especially in machine learning, deep learning, and data analytics, AI becomes increasingly transformative in pharmaceutical research and development, enabling the analysis of intricate biological datasets with unprecedented efficiency and accuracy.

Market challenges:

The stringent regulations and guidelines present a challenge, hindering the seamless integration of AI into India's drug discovery market. While vital for patient safety and data integrity, the complexity of regulatory frameworks may not always align smoothly with the rapidly evolving landscape of AI technologies. Additionally, the efficacy of AI relies on substantial data volumes, crucial for system training, but acquiring diverse data from various providers can entail additional expenses for companies.

Table of Contents

48 Pages
Chapter 1: Executive summary
Chapter 2: Socio-economic indicators
Chapter 3: Introduction
3.1. Market definition and structure
3.2. Major applications of AI in drug discovery
3.3. Use cases of AI in drug discovery
Chapter 4: Market Overview
4.1. Artificial intelligence in drug discovery market – an overview
4.2. Market size and growth forecast based on value (2020–2028e)
Chapter 5: Market Trends
5.1. Key market trends
Chapter 6: Impact of COVID-19
6.1. Impact of COVID-19
Chapter 7: Market Influencers
7.1. Market drivers
7.2. Market challenges
Chapter 8: Competitive Landscape
8.1. Tata Consultancy Services Limited
Company information
Business description
Products/services
Key people
Financial snapshot
Key ratios
Key financial performance indicators
Key business segments
Key geographic segments
Note: Financial information covered for public companies only
8.2. Wipro Limited
8.3. Google India Private Limited
8.4. IBM India Private Limited
8.5. Microsoft Corporation India Private Limited
Chapter 9: Major Start-ups
9.1. Major start-ups
Chapter 10: Recent Developments
10.1. Recent developments
Chapter 11: Appendix
11.1. Research methodology
11.2. About Netscribes
11.3. Disclaimer
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.