Report cover image

Artificial Intelligence In Healthcare - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

Published Sep 23, 2025
Length 120 Pages
SKU # MOI20477863

Description

Artificial Intelligence In Healthcare Market Analysis

With spending poised to rise from USD 39.92 billion in 2025 to USD 196.91 billion by 2030, the AI in healthcare industry is tracking a compound annual growth rate (CAGR) of 37.6 %. That growth curve effectively inserts an entirely new digital cost center into hospital finance, forcing chief financial officers to re-cast capital-allocation models that were designed a decade ago for electronic medical records. A notable consequence already surfacing in budget hearings is that AI appropriations are being transferred from innovation sandboxes into baseline infrastructure, a subtle shift that elevates algorithmic tooling to the same priority tier as imaging suites and laboratory analyzers. As that shift occurs, institutional investors are beginning to model AI cash flows not as optional upside but as core to future margin stabilization, a signal that valuation frameworks for publicly traded hospital chains may soon reflect algorithmic productivity assumptions by default.

Global Artificial Intelligence In Healthcare Market Trends and Insights

Increasing Data Availability: Unlocking Clinical Insights at Scale

Healthcare’s data-generation curve has entered the petabyte era. Tempus, for example, reports roughly eight million de-identified records and more than 300 petabytes of multi-omic and clinical data, giving it connections to about two-thirds of US academic medical centers. For chief analytics officers, that magnitude of proprietary content transforms data from a by-product into an appreciating asset. One strategic inference is that institutions without comparable data pools may resort to federated-learning partnerships so that algorithms can be trained on distributed datasets without breaching privacy regulations.

Increasing Incidence of Chronic Disease: Precision Diagnostics Transform Care

The clinical burden of chronic conditions is forcing health systems to re-examine traditional episodic models of care. Research from the National Institutes of Health shows that AI-powered retinal imaging can flag neuro-degenerative disorders several years before overt symptoms appear. Such early-warning capability implicitly reorders budget priorities: funds historically earmarked for late-stage interventions are starting to migrate upstream toward screening and risk-stratification programs. If this redeployment trend consolidates, actuarial tables used by payers may require recalibration to reflect lower long-term liabilities.

Data Privacy and Security Concerns: Regulatory Hurdles Intensify

Europe’s forthcoming AI Act classifies most clinical algorithms as high-risk and requires meticulous dataset documentation (Didier Reynders, “Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence,” European Commission. Compliance directors are therefore lobbying for early investment in automated data-lineage tools that can produce audit-ready provenance reports. Counterintuitively, the upfront compliance outlay is being reframed by some boards as a strategic barrier to entry, since smaller rivals may struggle to fund equivalent controls.

Other drivers and restraints analyzed in the detailed report include:

  1. Ability of AI to Improve Patient Outcomes: Clinical Decision Support Evolves
  2. Growing Need to Reduce Healthcare Costs: Operational Efficiency Drives Adoption
  3. Regulatory and Ethical Hurdles: Compliance Frameworks Evolve

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Machine learning retains a 38% market share in 2024, yet the forecast indicates that Generative AI will expand at a 48% CAGR between 2025 and 2030. An implication often missed is that transformer models are blurring boundaries between structured and unstructured data, creating cross-modality insights that earlier convolutional architectures could not deliver. For example, HealAI, a specialized large-language model reported to outperform GPT-4 by 59% in clinical tasks, points to a future where domain-specific models may command premium pricing in licensing negotiations. The machine-learning market size is still the largest today, but generative tools are expected to narrow that gap rapidly by 2030.

Medical imaging and diagnostics hold 31% of market share in 2024; however, drug-discovery platforms are projected to post a 44% CAGR through 2030. Even so, AI-assisted drug discovery is scaling faster, with algorithm-generated candidates reporting Phase I success rates as high as 80–90 %, roughly double historic averages . That differential is altering pharmaceutical portfolio management: pipeline attrition assumptions are being revised downward, freeing capital for broader therapeutic exploration without increasing total R&D spend.

The Artificial Intelligence in Healthcare Market Report Segments the Industry Into by Technology (Natural Language Processing (NLP), Deep Learning, and More), by Application (Robot-Assisted Surgery, Virtual Nursing Assistants, and More), by Offering (Hardware, Software, and Services), by End-User (Healthcare Payers, and More), and by Geography. The Market Research Report Offers the Value (in USD) for the Above Segments.

Geography Analysis

North America accounts for 58.9% of global market size in 2024, underpinned by clear regulatory pathways and abundant venture funding. The region’s leadership is further illustrated by the FDA’s 882 clearances of AI medical devices . For domestic suppliers, an under-the-radar advantage is that early federal guidance often sets the tone for software-liability jurisprudence, indirectly reducing insurance premiums for compliant vendors.

Asia-Pacific is forecast to deliver the highest regional CAGR at 42.5% between 2025 and 2030. Local executives observe that government-backed digital-health campaigns effectively compress the sales cycle for AI platforms by bundling them into national reimbursement schemes. Markets such as India, where public and private payers co-exist in a hybrid model, are consequently emerging as test beds for scalable, low-cost clinical-decision tools. In 2024 the Asia-Pacific diagnostics market size, for example, was a fraction of North America’s, yet the region’s imaging-AI segment is projected to widen at pace, reflecting pent-up demand.

Europe is carving out a distinct competitive identity by embedding trust frameworks into its commercial doctrine. The European Health Data Space aligns with the AI Act to streamline secondary use of health data while preserving patient consent requirements. For multinational corporations, one strategic inference is that successful European pilots can act as templates for privacy-sensitive deployments in other jurisdictions. Germany’s hospital-funding reforms, which explicitly earmark digital-infrastructure grants, further enhance the region’s attractiveness for AI rollouts that require capital-equipment upgrades.

List of Companies Covered in this Report:

  1. IBM
  2. Google LLC
  3. NVIDIA
  4. Amazon Web Services, Inc.
  5. Siemens Healthineers
  6. GE Healthcare
  7. Koninklijke Philips
  8. Medtronic
  9. Intuitive Surgical, Inc.
  10. Oracle
  11. Epic Systems
  12. Tempus Labs, Inc.
  13. Zebra Medical Vision
  14. PathAI, Inc.
  15. Qure.ai Technologies Pvt Ltd
  16. Paige AI, Inc.
  17. Deep Genomics, Inc.
  18. Entilitic Inc.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support
Please note: The report will take approximately 2 business days to prepare and deliver.

Table of Contents

120 Pages
1 Introduction
1.1 Study Assumptions & Market Definition
1.2 Scope of the Study
2 Research Methodology
3 Executive Summary
4 Market Landscape
4.1 Market Overview
4.2 Market Drivers
4.2.1 Growing Need to Reduce Increasing Healthcare Costs
4.2.2 Increasing Data Availability in Healthcare
4.2.3 Growing AI Reimbursement Pathways
4.2.4 Rapid proliferation of cloud-hosted “model marketplaces”
4.2.5 Increasing Incidence of Chronic Disease and High Demand for Personalized Treatment
4.2.6 Ability of AI to Improve Patient Outcomes
4.3 Market Restraints
4.3.1 Data Privacy and Security Concerns
4.3.2 Ongoing global semiconductor export controls and GPU supply shortages
4.3.3 Regulatory and Ethical Hurdles
4.3.4 Bias and Lack of Generalizability
4.4 Value-Chain Analysis
4.5 Regulatory Scenario
4.6 Technological Outlook
4.7 Porter’s Five Forces Analysis
4.7.1 Threat of New Entrants
4.7.2 Bargaining Power of Buyers
4.7.3 Bargaining Power of Suppliers
4.7.4 Threat of Substitutes
4.7.5 Intensity of Competitive Rivalry
5 Market Size & Growth Forecasts (Value, USD)
5.1 By Technology
5.1.1 Machine Learning
5.1.2 Deep Learning
5.1.3 Natural Language Processing
5.1.4 Computer Vision
5.1.5 Generative AI / Foundation Models
5.1.6 Reinforcement Learning
5.1.7 Other Technologies
5.2 By Application
5.2.1 Medical Imaging & Diagnostics
5.2.2 Robot-assisted Surgery
5.2.3 Virtual Nursing Assistants
5.2.4 Drug Discovery & Clinical-Trial Optimisation
5.2.5 Precision & Personalised Medicine
5.2.6 Remote Patient Monitoring & Wearables
5.2.7 Hospital Workflow & Operations Management
5.2.8 Fraud, Waste & Abuse Detection
5.2.9 Mental Health & Chatbots
5.2.10 Dosage Error Reduction & CDS
5.3 By Offering
5.3.1 Hardware
5.3.2 Software
5.3.3 Services ((Deployment, Integration, Managed)
5.4 By End User
5.4.1 Healthcare Providers
5.4.2 Healthcare Payers
5.4.3 Pharmaceutical & Biotechnology Companies
5.4.4 Patients / Consumers
5.4.5 CROs & Research Institutions
5.5 By Geography
5.5.1 North America
5.5.1.1 United States
5.5.1.2 Canada
5.5.1.3 Mexico
5.5.2 Europe
5.5.2.1 Germany
5.5.2.2 United Kingdom
5.5.2.3 France
5.5.2.4 Italy
5.5.2.5 Spain
5.5.2.6 Rest of Europe
5.5.3 Asia-Pacific
5.5.3.1 China
5.5.3.2 Japan
5.5.3.3 India
5.5.3.4 South Korea
5.5.3.5 Australia
5.5.3.6 Rest of Asia-Pacific
5.5.4 South America
5.5.4.1 Brazil
5.5.4.2 Argentina
5.5.4.3 Rest of South America
5.5.5 Middle East
5.5.5.1 GCC
5.5.5.2 South Africa
5.5.5.3 Rest of Middle East
6 Competitive Landscape
6.1 Market Concentration
6.2 Strategic Moves
6.3 Market Share Analysis
6.4 Company profiles ((includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products & Services, and Recent Developments)
6.4.1 IBM Corporation
6.4.2 Google LLC
6.4.3 NVIDIA Corporation
6.4.4 Amazon Web Services, Inc.
6.4.5 Siemens Healthineers AG
6.4.6 GE Healthcare
6.4.7 Philips
6.4.8 Medtronic plc
6.4.9 Intuitive Surgical, Inc.
6.4.10 Oracle Corporation
6.4.11 Epic Systems Corporation
6.4.12 Tempus Labs, Inc.
6.4.13 Zebra Medical Vision
6.4.14 PathAI, Inc.
6.4.15 Qure.ai Technologies Pvt Ltd
6.4.16 Paige AI, Inc.
6.4.17 Deep Genomics, Inc.
6.4.18 Entilitic Inc.
7 Market Opportunities & Future Outlook
7.1 White-space & Unmet-Need Assessment
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.