Report cover image

AI In Food And Beverages - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

Published Jul 08, 2025
Length 120 Pages
SKU # MOI20477368

Description

AI In Food And Beverages Market Analysis

The AI In Food And Beverages Market size is estimated at USD 13.39 billion in 2025, and is expected to reach USD 67.73 billion by 2030, at a CAGR of 38.30% during the forecast period (2025-2030).

Surging investments in computer vision, robotics, and predictive analytics help processors offset labor shortages, comply with strict safety norms, and cut waste, while large restaurant chains deploy personalization engines that lift ticket values and customer retention. Market momentum is amplified by government funding for smart-factory projects, cloud providers embedding turnkey AI modules into existing MES platforms, and global retailers tightening sustainability scorecard requirements for suppliers. Heightened competition is shifting emphasis from isolated pilots to enterprise-wide rollouts, with early adopters already reporting 8-12% overall-equipment-effectiveness gains and 10-15% inventory-spoilage cuts. Successful deployments now hinge on access to skilled process engineers who can align algorithm outputs with daily production constraints, making service partnerships a strategic imperative for manufacturers and food-service operators.

Global AI In Food And Beverages Market Trends and Insights

AI-Powered Computer-Vision Systems Slash Defect Rates More than 25% in Meat, Produce, and Bakery Lines

Real-time machine vision now detects microscopic blemishes that manual inspectors miss, lifting first-pass yield and cutting scrap. Accuracy levels exceed 95%, enabling plants to drive defect rates below 2% within half a year. Processors gain further upside by linking vision outputs to line-speed and cutting-parameter adjustments that optimize recovery. Chick-fil-A’s lemon-squeezing robots, for instance, saved 10,000 labor hours in 2024 while standardizing quality. These benefits resonate most in high-throughput operations where minor quality gains translate into significant margin protection.

Predictive-Maintenance Algorithms Curb Unplanned Downtime and Raise OEE by 8-12%

AI models analyze vibration and acoustic signatures, giving maintenance teams 2-4 weeks’ lead time to plan interventions and avoiding USD 50,000 per hour losses tied to emergency stoppages. Dairy plants adopting sensor-driven digital twins report 10% capacity upticks and 65% variability reductions. As inflation raises part and labor costs, the value of avoided downtime grows, moving predictive maintenance from optional to mandatory in capital-intensive lines.

Full-Stack AI Roll-Outs Can Exceed USD 5 Million Per Plant, Limiting Adoption by SMEs

High capital outlays for edge hardware, cloud licences, and systems integration restrain smaller firms, with 79% of processors delaying AI initiatives in 2025 due to cost uncertainty. Modular and subscription models reduce entry hurdles, yet ROI proofs remain essential for board approval in cash-constrained settings.

Other drivers and restraints analyzed in the detailed report include:

  1. Personalised Menu and Promo Engines Lift Average Ticket Size 15-20% for QSRs and Cafes
  2. Gen-AI Accelerates Recipe Reformulation Cycles from Months to Days, Boosting NPD Velocity
  3. Data Ownership and Cybersecurity Risks Deter Cloud-Based Deployments

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Software still anchors the AI in the food & beverages market, commanding 48% revenue in 2024, thanks to modular platforms that interface easily with legacy MES and PLC layers. Continuous over-the-air updates allow producers to refine algorithms without shutting lines, preserving uptime and lowering the total cost of ownership. Services, however, grow faster at 41.6% CAGR because value shifts to domain experts who can translate generic AI models into plant-specific workflows, calibrate sensors, and train staff on exception handling. Many processors now structure contracts around performance-linked fees, rewarding integrators for measurable yield or energy gains.

Ongoing skills shortages reinforce demand for third-party expertise, and major integrators bundle change-management programs with cloud subscriptions to shorten payback periods. As a result, services are expected to narrow the revenue gap with software by 2030, reflecting a broader sector view that execution quality outweighs tool selection. This convergence pushes vendors toward outcome-as-a-service deals that align incentives and open recurring revenue streams within the AI in food & beverages market.

Computer-vision suites captured the largest share at 42.5% because cameras and high-speed GPUs plug into existing conveyors with minimal disruption. Real-time image analytics automates defect detection, grading, and pack validation, delivering visible ROI within a single budget cycle. Conversely, robotics and automation post a 42.2% CAGR as processors confront labor scarcity and rising hygiene standards. Collaborative robots now portion dough, garnish bowls, and execute clean-in-place tasks, expanding the automation addressable market beyond palletizing and pick-and-place operations.

Integrating vision-guided arms with smart grippers supports gentle handling of fragile items such as pastries or fresh berries, broadening use cases in premium product lines. Government incentives, Japan’s USD 7.8 million culinary-robot grant among them, accelerate capex plans. Over the forecast horizon, hybrid cells that meld robotics, vision, and AI scheduling engines are expected to redefine factory layout economics across the AI in food & beverages market.

The AI in Food and Beverage Market Report is Segmented by Component (Hardware, Software, and Services), Technology (Machine Learning, Computer Vision, Natural Language Processing, and Robotics and Automation), Application (Food Sorting and Grading, Quality Control and Safety Compliance, Production and Packaging Optimization, and More), by End User ( Food Processing Manufacturers, Beverage Manufacturers, and More), and by Geography.

Geography Analysis

Asia Pacific leads the AI in food & beverages market with 34.1% share in 2024 and is expanding at 41.5% CAGR as governments champion smart-manufacturing roadmaps and wage inflation undercuts manual processes. China’s multibillion-dollar AI infrastructure subsidies enable domestic OEMs to offer low-cost vision modules, while India’s food-processing incentives favour startups integrating crop-to-fork data for traceability. Regional pilots show tangible impact: Taiwan’s tea processors lifted capacity 75% and halved labor through AI-enabled lines, illustrating the pragmatic uptake pace.

North America maintains heavyweight status through enterprise alliances, typified by Coca-Cola’s USD 1.1 billion Microsoft agreement that equips plants with predictive quality, demand sensing, and generative marketing tools. Regulatory bodies reinforce adoption; the FDA’s Elsa platform applies machine learning to speed risk-based inspection scheduling, signaling policy support for AI in compliance workflows. Capital budgets remain disciplined, yet boardrooms prioritize proven AI modules that bolster resilience against supply shocks and wage pressure.

Europe balances ambition and caution under the EU AI Act framework, requiring rigorous transparency and human oversight. Producers view compliance as a license-to-operate cost and selectively pilot AI for carbon-footprint reporting, allergen tracking, and yield optimization. Carbon-traceable products command 5-10% premiums in northern supermarkets, motivating exporters to integrate accredited AI systems. While South America and MEA markets trail in absolute spend, infrastructure programs and knowledge-transfer partnerships are laying the groundwork for faster adoption in grains, cocoa, and protein subsectors, ensuring the AI in food & beverages market ultimately scales worldwide.

List of Companies Covered in this Report:

  1. ABB Ltd
  2. Honeywell International Inc.
  3. Rockwell Automation Inc.
  4. TOMRA Food (TOMRA Sorting Solutions AS)
  5. Key Technology Inc.
  6. Sesotec GmbH
  7. Cognex Corporation
  8. Keyence Corporation
  9. GREEFA
  10. Cimbria A/S
  11. Seebo (Augury)
  12. Sight Machine Inc.
  13. Landing AI
  14. ImagoAI
  15. Siemens AG
  16. Schneider Electric SE
  17. IBM Corporation
  18. Microsoft Azure
  19. Google Cloud Platform
  20. AWS (Amazon Web Services)

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support
Please note: The report will take approximately 2 business days to prepare and deliver.

Table of Contents

120 Pages
1 INTRODUCTION
1.1 Study Assumptions and Market Definition
1.2 Scope of the Study
2 RESEARCH METHODOLOGY
3 EXECUTIVE SUMMARY
4 MARKET INSIGHTS
4.1 Market Overview
4.2 Analysis of COVID-19 and Other Macroeconomic Shocks
4.3 Market Drivers
4.3.1 AI-powered computer-vision systems slash defect rates >25% in meat, produce and bakery lines
4.3.2 Predictive-maintenance algorithms curb unplanned downtime and raise OEE by 8-12%
4.3.3 Personalised menu and promo engines lift average ticket size 15-20% for QSRs and cafes
4.3.4 Gen-AI accelerates recipe reformulation cycles from months to days, boosting NPD velocity
4.3.5 Carbon-traceable AI platforms unlock 5-10% "green-premium" pricing in export markets
4.3.6 End-to-end predictive analytics cut inventory spoilage 10-15%, saving ~USD 30 bn globally
4.4 Market Restraints
4.4.1 Full-stack AI roll-outs can exceed USD 5 m per plant, limiting adoption by SMEs
4.4.2 Data-ownership and cybersecurity risks deter cloud-based deployments
4.4.3 Seasonal ingredient variability causes model-drift, inflating re-training costs
4.4.4 Acute shortage of AI-savvy process engineers in FandB plants delays scaling efforts
4.5 Value/Supply-Chain Analysis
4.6 Regulatory Landscape
4.7 Technological Outlook
4.8 Porter's Five Forces Analysis
4.8.1 Bargaining Power of Suppliers
4.8.2 Bargaining Power of Buyers
4.8.3 Threat of New Entrants
4.8.4 Threat of Substitutes
4.8.5 Competitive Rivalry
4.9 Investment Analysis
5 MARKET SIZE AND GROWTH FORECASTS (VALUE)
5.1 By Component
5.1.1 Hardware
5.1.2 Software
5.1.3 Services
5.2 By Technology
5.2.1 Machine Learning
5.2.2 Computer Vision
5.2.3 Natural Language Processing
5.2.4 Robotics and Automation
5.3 By Application
5.3.1 Food Sorting and Grading
5.3.2 Quality Control and Safety Compliance
5.3.3 Production and Packaging Optimisation
5.3.4 Predictive Maintenance
5.3.5 Consumer Engagement and Personalisation
5.3.6 Quick-service and Cloud Kitchens
5.3.7 Inventory and Supply-Chain Planning
5.3.8 Other Niche Applications
5.4 By End User
5.4.1 Food Processing Manufacturers
5.4.2 Beverage Manufacturers
5.4.3 Hotels and Full-service Restaurants
5.4.4 Quick-service and Cloud Kitchens
5.4.5 Retailers and E-commerce Grocers
5.4.6 Others (Catering, Institutional FandB)
5.5 By Geography
5.5.1 North America
5.5.1.1 United States
5.5.1.2 Canada
5.5.1.3 Mexico
5.5.2 South America
5.5.2.1 Brazil
5.5.2.2 Argentina
5.5.2.3 Rest of South America
5.5.3 Europe
5.5.3.1 Germany
5.5.3.2 France
5.5.3.3 United Kingdom
5.5.3.4 Italy
5.5.3.5 Rest of Europe
5.5.4 Asia-Pacific
5.5.4.1 China
5.5.4.2 India
5.5.4.3 Japan
5.5.4.4 Australia
5.5.4.5 Rest of Asia-Pacific
5.5.5 Middle East and Africa
5.5.5.1 Middle East
5.5.5.1.1 Saudi Arabia
5.5.5.1.2 United Arab Emirates
5.5.5.1.3 Rest of Middle East
5.5.5.2 Africa
5.5.5.2.1 South Africa
5.5.5.2.2 Nigeria
5.5.5.2.3 Rest of Africa
6 COMPETITIVE LANDSCAPE
6.1 Market Concentration
6.2 Strategic Moves
6.3 Market Share Analysis
6.4 Company Profiles (includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share, Products and Services, Recent Developments)
6.4.1 ABB Ltd
6.4.2 Honeywell International Inc.
6.4.3 Rockwell Automation Inc.
6.4.4 TOMRA Food (TOMRA Sorting Solutions AS)
6.4.5 Key Technology Inc.
6.4.6 Sesotec GmbH
6.4.7 Cognex Corporation
6.4.8 Keyence Corporation
6.4.9 GREEFA
6.4.10 Cimbria A/S
6.4.11 Seebo (Augury)
6.4.12 Sight Machine Inc.
6.4.13 Landing AI
6.4.14 ImagoAI
6.4.15 Siemens AG
6.4.16 Schneider Electric SE
6.4.17 IBM Corporation
6.4.18 Microsoft Azure
6.4.19 Google Cloud Platform
6.4.20 AWS (Amazon Web Services)
7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK
7.1 White-space and Unmet-need Assessment
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.