Report cover image

Technology Landscape, Trends and Opportunities in Network Engineering Services Market

Publisher Lucintel
Published Oct 06, 2025
Length 150 Pages
SKU # EC20452527

Description

Network Analytics Market Trends and Forecast

Over the past few years, the technologies in the network analytics market have shifted from traditional network management technologies to more sophisticated solutions that use AI techniques like artificial intelligence (AI), machine learning (ML), and deep packet inspection (DPI). These advancements enhance the capacity for real-time data processing, predictive analytics, improved overall network performance management, and proactive troubleshooting. Forecasting and prediction became easier with predictive analytics, which enabled the development of Risk Management, while on the other hand, deep packet inspection (DPI) is transitioning from being overseen through manual processes to patterns that can provide automated intelligent analysis of massive data streams.

Emerging Trends in the Network Analytics Market

The ways and operations involved in network analytics have evolved rapidly due to advancements in technology, the increasing volume of data, and the growing complexity of network infrastructures. Enterprises harness the potential of different data sets and aim to improve network infrastructure and customer interactivity. Several emerging trends in the market are promising in this aspect. These trends highlight the increasing role of AI, ML, and automation as key drivers for enhancing and automating processes related to network analytics. The following are five major trends in the network analytics market:
  • Integrating AI and ML into network analytics: The application of AI and ML technologies into network analytics tools enables network anomaly detection and behavior prediction. This makes real-time monitoring, management decision support, and network operational problem resolution effective and efficient.
  • Rise of Predictive Analytics: The use of predictive analytics is expected to become central to strategies for managing and optimizing network analytics. By relying on AI patterns and algorithms, predictive analytics enables enterprises to assess the business outlook and find ways to prevent or minimize weaknesses, such as network outages and performance bottlenecks.
  • Deep Packet Inspection (DPI) to reduce potential threats: DPI technologies are gaining focus in the development of network management and security. They help businesses deal with threats, boost data transfer, and manage bandwidth more efficiently. This development is crucial for providing secure and fast networks, as it enables the identification of threats or weaknesses at any point in time.
  • Cloud-Native network analytics: As organizations continue to move to the cloud, the adoption of cloud-based network analytics tools increases. These platforms offer significant resources, operational flexibility, and the ability to process large volumes of data, enabling effective network management across distributed locations and improving interactions between different branches of the organization.
  • Automation and Real-Time Analytics: The growing demand for automation in network operations is driving the use of real-time network analysis tools. These solutions help make quicker decisions regarding network security and traffic flow by providing constant insights, reducing human input, and increasing efficiency.
These new trends are transforming the network analytics market, making it more automated, secure, and data-focused. The combination of AI, machine learning, and predictive analytics makes network management more efficient, effective, and reduces associated risks. Additionally, deep packet inspection and cloud-native services are being deployed to increase security and improve scalability, while automation is facilitating real-time analytics. In summary, these technological developments are changing how organizations approach network optimization and performance management.

Network Analytics Market : Industry Potential, Technological Development, and Compliance Considerations

The market potential for network analytics remains largely untapped, with AI, ML, DPI, and Predictive Analytics solutions offering room for further market penetration. These technologies enable the processing of large amounts of network data in real-time, facilitating timely and effective network performance management, detecting abnormal network behaviors, and providing predictive maintenance. As networks become more complex and data-driven, the applications of AI and ML in supporting decision-making and other network activities are expected to grow significantly.
  • Degree of Disruption:
In the network analytics market, the degree of disruption is high. There is an increasing trend toward AI-based automated systems, which provide insights faster and more accurately than traditional network management systems. Predictive tools and real-time monitoring systems are changing how networks operate, reducing downtime and enhancing network security. This makes it easier for companies to lower costs, improve user satisfaction, and better manage resources.
  • Current Technology Maturity Level:
AI, ML, and DPI have reached high levels of maturity, with several solutions already in use in enterprise networks. However, there remains a gap in unified, cloud-based solutions that can accommodate massive data volumes.
  • Regulatory Compliance:
Compliance with regulatory requirements is critical, particularly in industries such as finance, healthcare, and telecommunications, where data privacy and security are of utmost importance. As network analytics tools advance, it is essential to comply with legislative regulations like GDPR and HIPAA when dealing with sensitive data that requires real-time access.

Recent Technological development in Network Analytics Market by Key Players

The network analytics market has experienced rapid growth due to improvements in Artificial Intelligence (AI), Machine Learning (ML), and Deep Packet Inspection (DPI) technologies. In terms of better and safer network administration, the industry is dominated by Allot Communications, Broadcom Inc., Ciena Corporation, Cisco Systems Inc., and Extreme Networks. These companies are implementing advanced technologies and solutions to address evolving network issues, enhance traffic management, and optimize network performance. Below are some recent developments by these market leaders, showing their role and impact in the ecosystem.
  • Allot Communications: Allot has introduced its Secure Web Gateway solution, combining deep packet inspection and AI for enhanced network security and visibility. This development strengthens Allot’s portfolio by enabling real-time traffic analysis, threat detection, and secure internet use, reinforcing its position in the network analytics market.
  • Broadcom Inc.: Broadcom has expanded its next-generation network monitoring solutions using AI and ML technology to improve traffic analysis and network performance. This allows Broadcom to provide more precise data analytics, enhance information dissemination across networks, and better manage infrastructure, boosting competition in the network analytics market.
  • Ciena Corporation: Ciena introduced its Adaptive IP solution, using machine learning and analyzing data for efficient IP traffic management. This innovation improves network flexibility by routing traffic dynamically and enhancing resource distribution, allowing service providers to handle increased demand and complex network conditions more effectively.
  • Cisco Systems Inc.: Cisco launched its new AI Analytics for Network Management platform, which uses AI and ML to forecast network issues and resolve them proactively. This development enables agencies to enhance operational efficiency, forecast potential problems, and improve customer experiences, solidifying Cisco’s leadership in the network analytics market.
  • Extreme Networks: Extreme Networks has integrated cloud-based network analytics into its ExtremeCloud IQ platform, improving the company’s ability to monitor network changes, measure threats, and understand resource consumption. This helps enterprises react quickly to changes and optimize resource usage.
These developments demonstrate the continuous work being done by industry leaders in the network analytics market, focusing on AI, ML, and other modern technologies to address network performance challenges and drive innovation across various sectors.

Network Analytics Market Driver and Challenges

The growth of the network analytics market is inevitable, driven by numerous firms and service providers focused on enhancing network performance and managing traffic while maintaining security. As network complexities increase, ensuring robust security becomes more challenging. At the same time, advancements in technologies such as AI, machine learning, and Deep Packet Inspection (DPI) are opening new avenues to address these challenges. However, obstacles remain, particularly concerning data privacy breaches and the rise of other technologies that are also gaining traction.

Drivers:
  • Increased Demand for Network Efficiency: One of the key drivers of the network analytics market is the growing demand for more efficient and effective networks. Performance-enhancing analytics tools, optimized traffic management, and minimizing downtime are critical for organizations managing complex and evolving networks. This demand drives investment in solutions designed to improve network performance.
  • Emergence of AI and Machine Learning: The increased adoption of AI and machine learning is transforming the network analytics market. These technologies reduce the need for deep, manual data analysis by enabling the automated identification and resolution of network problems. AI and machine learning help organizations solve network issues more quickly and intelligently, leading to reduced operational costs.
  • Expansion of Cybersecurity Threats: As cybersecurity threats increase, the demand for network analytics solutions that include DPI and real-time monitoring grows. These tools allow businesses to identify potential threats, mitigate risks, and maintain strong network security across various environments.
  • Cloud-Based Networking Solutions Adoption: The shift toward cloud-based models, including multi-cloud and hybrid IT environments, is another driver for network analytics growth. Cloud platforms offer scalability, flexibility, and cost efficiency, enabling businesses to deploy and manage networks across multiple locations without the need for heavy on-site infrastructure.
  • Deployment of 5G Technology: The rollout of 5G networks will further complicate network traffic management and performance optimization. Network analytics tools will play a crucial role in addressing these challenges, improving 5G network traffic performance, and providing visibility and predictive analytics on key performance indicators.
Challenges:
  • Data Privacy Concerns in Network Analytics: Network analytics often requires the collection and analysis of vast amounts of data, raising concerns about user privacy and compliance with data protection laws. Regulations such as GDPR pose challenges for network analytics providers, who must ensure proper data management and maintain customer trust.
  • Compatibility with Outdated Systems: Many organizations still rely on legacy systems, making it difficult and costly to implement modern network analytics tools. The challenge of integrating new technologies with outdated infrastructure creates a significant barrier to the effective adoption and use of contemporary network analytics solutions.
  • High Initial Adoption Costs: Implementing network analytics solutions can be costly, especially for small businesses. The expenses associated with software, hardware, and training may deter organizations from adopting these advanced tools, even though they can offer long-term savings and improvements in network performance.
  • Lack of Specialized Personnel: As network analytics tools evolve, the need for skilled professionals in AI, machine learning, and data analytics becomes more critical. However, there is a shortage of such talent, limiting the full adoption and effectiveness of network analytics solutions within organizations.
  • Managing Large Volumes of Analytics Data: The data generated by modern networks is growing at a rapid pace, and existing analytics systems often struggle to keep up. To make this data actionable and relevant, advanced technologies and new algorithms are required, which many organizations lack the resources or expertise to implement effectively.
Technological advancements in AI, machine learning, cloud adoption, and 5G are creating a strong foundation for smarter, more efficient network management. However, challenges such as data privacy concerns, integration with legacy systems, and the shortage of skilled personnel continue to hinder the widespread adoption and implementation of these technologies. As businesses work to overcome these obstacles, the network analytics market is poised for significant growth, with more integrated and advanced solutions that will improve network performance, security, and overall efficiency

List of Network Analytics Companies

Companies in the market compete on the basis of the product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leveraging integration opportunities across the value chain. With these strategies, network analytics companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the network analytics companies profiled in this report include.
  • Allot Communication
  • Broadcom, Inc.
  • Ciena Corporation
  • Cisco Systems, Inc.
  • Extreme Networks
Network Analytics Market by Technology

Technology Readiness by Technology Type:
  • AI is a mature technology with advanced features for automating network control, but regulatory compliance in data management remains a challenge.
  • ML is advanced and gradually being integrated into network analytics tools with prediction features but still faces challenges related to data privacy protection.
  • DPI is considered a best practice technology for network security and monitoring, but it requires supporting policies to enhance adoption.
  • Predictive analytics is improving, offering insights into future network behaviors, but industries must ensure compliance with regulations.
  • Emerging technologies like Blockchain and 5G are at varying levels of adoption, creating new possibilities while exposing compliance challenges.
  • AI and ML are more advanced compared to other technologies, while Blockchain focuses on targeted solutions with less competition.
  • AI and ML play a supervisory role in safeguarding data, while DPI must remain consistent with regulatory requirements for traffic inspection.
  • Most predictive analytics tools are at a readiness stage, but their validation for critical infrastructure use is essential.
  • These technologies will increasingly be applied to traffic management, security, and predictive maintenance as they become more sophisticated.
  • The advancement of AI, ML, and DPI technologies has great potential for network analytics, but regulatory oversight is necessary.
Competitive Intensity and Regulatory Compliance:
  • AI is highly competitive with several global players, but data privacy and security remain challenges that must be addressed.
  • ML, like AI, faces competition as other companies incorporate it into their solutions. However, ML is more restrictive regarding data protection regulations.
  • DPI is fiercely competitive in network security but must comply with data privacy laws, including GDPR.
  • Predictive analytics is growing, but regulatory issues still arise in sectors like telecommunications.
  • Emerging technologies like 5G, Blockchain, and IoT present new opportunities in network analytics, but development must adhere to regulatory requirements.
  • AI and ML require ethical policy provisions, especially regarding the data used for decision-making in network analytics.
  • DPI faces concerns from clients about legal issues related to traffic inspection and interception, limiting its performance.
  • In sectors like finance, predictive analytics tools face criticism from regulators regarding their influence on decision-making.
  • Regulatory compliance with local and international laws will become crucial as competition intensifies.
  • Adhering to regulatory demands will help firms differentiate themselves by focusing on addressing compliance issues rather than just innovation.
Disruption Potential by Technology Type:
  • AI will greatly disrupt automation and data-driven decision-making within devices, allowing semi-autonomous networks.
  • ML will improve existing infrastructure performance and datasets to aid traffic and event prediction through automation.
  • DPI provides valuable information regarding performance, security, and troubleshooting by analyzing traffic traversing the network.
  • Predictive analytics identifies potential issues and trends, enabling maintenance and improving user experience.
  • Other technologies, such as Blockchain and 5G, are also disrupting the status quo, adding security, speed, and scalability to network analytics.
  • AI and ML can enhance big data analysis, increasing network efficiency and reducing idle time.
  • DPI helps identify patterns in internet use that would otherwise go unnoticed, improving systems for combating and reducing threats.
  • Predictive analytics can transform how networks are developed by using historical data to anticipate traffic and system congestion risks.
  • AI is expected to shift how dynamic traffic is managed after being trained with real traffic data.
  • The synergistic effect of these technologies will change the way network analytics are performed, making them more effective and scalable.
Network Analytics Market Trend and Forecast by Technology [Value from 2019 to 2031]:
  • Artificial Intelligence (AI)
  • Machine Learning
  • Deep Packet Inspection (DPI)
  • Predictive Analytics
  • Others
Network Analytics Market Trend and Forecast by Application [Value from 2019 to 2031]:
  • Customer Analysis
  • Risk Management & Fault Detection
  • Network Performance Management
  • Compliance Management
  • Quality Management
  • Others
Network Analytics Market by Region [Value from 2019 to 2031]:
  • North America
  • Europe
  • Asia Pacific
  • The Rest of the World
  • Latest Developments and Innovations in the Network Analytics Technologies
  • Companies / Ecosystems
  • Strategic Opportunities by Technology Type
Features of the Global Network Analytics Market

Market Size Estimates: Network analytics market size estimation in terms of ($B).

Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.

Segmentation Analysis: Technology trends in the global network analytics market size by various segments, such as application and technology in terms of value and volume shipments.

Regional Analysis: Technology trends in the global network analytics market breakdown by North America, Europe, Asia Pacific, and the Rest of the World.

Growth Opportunities: Analysis of growth opportunities in different application, technologies, and regions for technology trends in the global network analytics market.

Strategic Analysis: This includes M&A, new product development, and competitive landscape for technology trends in the global network analytics market.

Analysis of competitive intensity of the industry based on Porter’s Five Forces model.

This report answers following 11 key questions

Q.1. What are some of the most promising potential, high-growth opportunities for the technology trends in the global network analytics market by technology (artificial intelligence (AI), machine learning, deep packet inspection (DPI), predictive analytics, and others), application (customer analysis, risk management & fault detection, network performance management, compliance management, quality management, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?

Q.2. Which technology segments will grow at a faster pace and why?

Q.3. Which regions will grow at a faster pace and why?

Q.4. What are the key factors affecting dynamics of different technology? What are the drivers and challenges of these technologies in the global network analytics market?

Q.5. What are the business risks and threats to the technology trends in the global network analytics market?

Q.6. What are the emerging trends in these technologies in the global network analytics market and the reasons behind them?

Q.7. Which technologies have potential of disruption in this market?

Q.8. What are the new developments in the technology trends in the global network analytics market? Which companies are leading these developments?

Q.9. Who are the major players in technology trends in the global network analytics market? What strategic initiatives are being implemented by key players for business growth?

Q.10. What are strategic growth opportunities in this network analytics technology space?

Q.11. What M & A activities did take place in the last five years in technology trends in the global network analytics market?

Please note: It will take 2-3 business days to deliver the report upon receipt the order.

Table of Contents

150 Pages
1. Executive Summary
2. Technology Landscape
2.1: Technology Background and Evolution
2.3: Supply Chain
3. Technology Readiness
3.1. Technology Commercialization and Readiness
3.2. Drivers and Challenges in Network Engineering Services Technology
4. Technology Trends and Opportunities
4.1: Network Engineering Services Market Opportunity
4.2: Technology Trends and Growth Forecast
4.3: Technology Opportunities by Technology
4.3.1: Software-Defined Networking (SDN)
4.3.2: Network Virtualization
4.3.3: Network Automation
4.3.4: Cloud Networking
4.3.5: Others
4.4: Technology Opportunities by End Use
4.4.1: BFSI
4.4.2: IT & Telecommunication
4.4.3: Government
4.4.4: Education
4.4.5: Healthcare
4.4.6: Manufacturing
4.4.7: Media & Entertainment
4.4.8: Others (Energy & Utility)
5. Technology Opportunities by Region
5.1: Global Network Engineering Services Market by Region
5.2: North American Network Engineering Services Market
5.2.1: Canadian Network Engineering Services Market
5.2.2: Mexican Network Engineering Services Market
5.2.3: United States Network Engineering Services Market
5.3: European Network Engineering Services Market
5.3.1: German Network Engineering Services Market
5.3.2: French Network Engineering Services Market
5.3.3: The United Kingdom Network Engineering Services Market
5.4: APAC Network Engineering Services Market
5.4.1: Chinese Network Engineering Services Market
5.4.2: Japanese Network Engineering Services Market
5.4.3: Indian Network Engineering Services Market
5.4.4: South Korean Network Engineering Services Market
5.5: ROW Network Engineering Services Market
5.5.1: Brazilian Network Engineering Services Market
6. Latest Developments and Innovations in the Network Engineering Services Technologies
7. Competitor Analysis
7.1: Product Portfolio Analysis
7.2: Geographical Reach
7.3: Porter’s Five Forces Analysis
8. Strategic Implications
8.1: Implications
8.2: Growth Opportunity Analysis
8.2.1: Growth Opportunities for the Global Network Engineering Services Market by Technology
8.2.2: Growth Opportunities for the Global Network Engineering Services Market by End Use
8.2.3: Growth Opportunities for the Global Network Engineering Services Market by Region
8.3: Emerging Trends in the Global Network Engineering Services Market
8.4: Strategic Analysis
8.4.1: New Product Development
8.4.2: Capacity Expansion of the Global Network Engineering Services Market
8.4.3: Mergers, Acquisitions, and Joint Ventures in the Global Network Engineering Services Market
8.4.4: Certification and Licensing
8.4.5: Technology Development
9. Company Profiles of Leading Players
9.1: Calsoft Inc.
9.2: Datavision, Inc.
9.3: Movate
9.4: Juniper Networks, Inc.
9.5: Sincera Technologies
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.