Report cover image

Global Processing in-memory AI Chips Market Growth 2026-2032

Published Jan 07, 2026
Length 113 Pages
SKU # LPI20697295

Description

The global Processing in-memory AI Chips market size is predicted to grow from US$ 226 million in 2025 to US$ 48777 million in 2032; it is expected to grow at a CAGR of 116.5% from 2026 to 2032.

Processing-in-Memory AI chips are computing architectures that integrate computation capabilities directly within or very close to memory arrays, enabling arithmetic operations—such as multiply-accumulate— to be performed where data is stored, thereby minimizing data movement between memory and processors; by alleviating the von Neumann bottleneck, PIM chips can significantly improve energy efficiency, bandwidth utilization, and latency, making them particularly suitable for AI workloads dominated by matrix and vector operations, while challenges remain in precision control, manufacturing variability, programmability, and ecosystem maturity as the technology transitions from research prototypes toward specialized commercial deployments.

The processing-in-memory (PIM) AI chip market is at an early commercialization stage, with a small but rapidly growing addressable market driven primarily by energy-efficient AI inference, edge computing, and memory-bandwidth-constrained workloads. Market adoption is currently led by specialized startups, research spin-offs, and pilot programs involving memory and semiconductor manufacturers, with deployments mainly in proof-of-concept systems and limited-volume, application-specific designs rather than mass production. While conventional GPUs and ASIC accelerators continue to dominate mainstream AI computing, PIM architectures are gaining attention for their ability to significantly reduce data-movement energy and latency, positioning them for gradual penetration into selected verticals as process integration, software ecosystems, and reliability mature over the next several years.

LP Information, Inc. (LPI) ' newest research report, the “Processing in-memory AI Chips Industry Forecast” looks at past sales and reviews total world Processing in-memory AI Chips sales in 2025, providing a comprehensive analysis by region and market sector of projected Processing in-memory AI Chips sales for 2026 through 2032. With Processing in-memory AI Chips sales broken down by region, market sector and sub-sector, this report provides a detailed analysis in US$ millions of the world Processing in-memory AI Chips industry.

This Insight Report provides a comprehensive analysis of the global Processing in-memory AI Chips landscape and highlights key trends related to product segmentation, company formation, revenue, and market share, latest development, and M&A activity. This report also analyzes the strategies of leading global companies with a focus on Processing in-memory AI Chips portfolios and capabilities, market entry strategies, market positions, and geographic footprints, to better understand these firms’ unique position in an accelerating global Processing in-memory AI Chips market.

This Insight Report evaluates the key market trends, drivers, and affecting factors shaping the global outlook for Processing in-memory AI Chips and breaks down the forecast by Type, by Application, geography, and market size to highlight emerging pockets of opportunity. With a transparent methodology based on hundreds of bottom-up qualitative and quantitative market inputs, this study forecast offers a highly nuanced view of the current state and future trajectory in the global Processing in-memory AI Chips.

This report presents a comprehensive overview, market shares, and growth opportunities of Processing in-memory AI Chips market by product type, application, key manufacturers and key regions and countries.

Segmentation by Type:
DRAM-PIM
SRAM-PIM
Others

Segmentation by Chips Type:
Near-Memory Computing (PNM) Chip
In-Memory Processing (PIM) Chip
In-Memory Computing (CIM) Chip

Segmentation by Storage Media:
Volatile Memory
Non-volatile Memory

Segmentation by Application:
Small Computing Power
Large Computing Power

This report also splits the market by region:
Americas
United States
Canada
Mexico
Brazil
APAC
China
Japan
Korea
Southeast Asia
India
Australia
Europe
Germany
France
UK
Italy
Russia
Middle East & Africa
Egypt
South Africa
Israel
Turkey
GCC Countries

The below companies that are profiled have been selected based on inputs gathered from primary experts and analysing the company's coverage, product portfolio, its market penetration.
Syntiant
Hangzhou Zhicun (Witmem) Technology
Shenzhen Reexen Technology
Myhtic
Beijing Pingxin Technology
Graphcore
Axelera AI
AistarTek
Suzhou Yizhu Intelligent Technology
Beijing Houmo Technology
Samsung
SK Hynix
D-Matrix
EnCharge AI

Key Questions Addressed in this Report

What is the 10-year outlook for the global Processing in-memory AI Chips market?

What factors are driving Processing in-memory AI Chips market growth, globally and by region?

Which technologies are poised for the fastest growth by market and region?

How do Processing in-memory AI Chips market opportunities vary by end market size?

How does Processing in-memory AI Chips break out by Type, by Application?

Please note: The report will take approximately 2 business days to prepare and deliver.

Table of Contents

113 Pages
*This is a tentative TOC and the final deliverable is subject to change.*
1 Scope of the Report
2 Executive Summary
3 Global by Company
4 World Historic Review for Processing in-memory AI Chips by Geographic Region
5 Americas
6 APAC
7 Europe
8 Middle East & Africa
9 Market Drivers, Challenges and Trends
10 Manufacturing Cost Structure Analysis
11 Marketing, Distributors and Customer
12 World Forecast Review for Processing in-memory AI Chips by Geographic Region
13 Key Players Analysis
14 Research Findings and Conclusion
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.