Report cover image

Global IIoT Platforms for Predictive Maintenance Market Growth (Status and Outlook) 2025-2031

Published Aug 15, 2025
Length 136 Pages
SKU # LPI20314263

Description

According to this study, the global IIoT Platforms for Predictive Maintenance market size will reach US$ 14510 million by 2031.

IIoT Platforms for Predictive Maintenance are integrated systems that use Industrial Internet of Things (IIoT) technologies to monitor, collect, and analyze real-time data from industrial equipment and machinery. By leveraging sensors and advanced analytics, these platforms predict when maintenance is needed, helping to prevent unexpected failures and reduce downtime. They utilize artificial intelligence and machine learning to detect anomalies, wear patterns, and potential failures, enabling proactive maintenance actions such as repairs or part replacements. Commonly used in industries like manufacturing, energy, and transportation, these platforms improve operational efficiency and reduce costs by optimizing maintenance schedules.

The market for IIoT platforms focused on predictive maintenance has been evolving rapidly as industries recognize the significant benefits of proactive maintenance strategies. Platforms like Uptake, SparkPredict, Hitachi Vantara Lumada, and PTC ThingWorx lead the way in providing advanced predictive analytics, utilizing vast amounts of real-time data from sensors and connected machinery to forecast potential failures. These platforms leverage machine learning, artificial intelligence, and big data analytics to monitor the health of assets and identify patterns that signal impending breakdowns. By doing so, they enable companies to schedule maintenance only when necessary, reducing unplanned downtime, optimizing resource allocation, and extending the lifespan of critical equipment. Such platforms also offer a high degree of scalability, making them applicable across industries, from manufacturing to energy and transportation, all of which depend heavily on the uptime of their machines and equipment.

In addition to improving efficiency and reducing costs, IIoT predictive maintenance platforms are playing a critical role in reshaping how businesses approach maintenance and operations. These platforms not only support immediate needs for operational efficiency but also help companies build a more sustainable future by preventing waste and energy overuse. Through real-time monitoring and predictive analytics, businesses can shift from a reactive maintenance model to a more proactive, data-driven approach, which aligns with the growing emphasis on sustainability and smart manufacturing practices. Furthermore, as industries transition to more digitized and interconnected environments, IIoT platforms offer greater integration with enterprise systems, providing a holistic view of operations and enabling smarter decision-making. This interconnectedness is essential as companies continue to invest in IoT and AI technologies to drive digital transformation, ensuring they can remain competitive in an increasingly automated and data-driven world.

This report presents a comprehensive overview, market shares, and growth opportunities of IIoT Platforms for Predictive Maintenance market by product type, application, key players and key regions and countries.

Segmentation by Type:
Integrated IIoT Ecosystems
Industry-Specific Platforms

Segmentation by Application:
Manufacturing
Logistics
Energy & Utilities
Oil & Gas
Healthcare
Automotive
Others

This report also splits the market by region:
United States
China
Europe
Other regions
Japan
South Korea
Southeast Asia
Rest of world

The report also presents the market competition landscape and a corresponding detailed analysis of the major players in the market. The key players covered in this report:
General Electric
PTC
IBM
Siemens
SAP
AWS
Microsoft
Emerson Electric
ABB
Hitachi
Schneider Electric
Honeywell
Rockwell Automation
Robert Bosch
Autodesk
Uptake Technologies

Please note: The report will take approximately 2 business days to prepare and deliver.

Table of Contents

136 Pages
*This is a tentative TOC and the final deliverable is subject to change.*
1 Scope of the Report
2 Executive Summary
3 IIoT Platforms for Predictive Maintenance Key Players
4 IIoT Platforms for Predictive Maintenance by Regions
5 United States
6 Europe
7 China
8 Rest of World
9 Market Drivers, Challenges and Trends
10 Key Investors in IIoT Platforms for Predictive Maintenance
11 Key Players Analysis
12 Research Findings and Conclusion
How Do Licenses Work?
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.