Report cover image

Global Artificial Intelligence (AI) in Agriculture Market Growth (Status and Outlook) 2026-2032

Published Jan 02, 2025
Length 141 Pages
SKU # LPI20691217

Description

The global Artificial Intelligence (AI) in Agriculture market size is predicted to grow from US$ 2739 million in 2025 to US$ 10532 million in 2032; it is expected to grow at a CAGR of 21.8% from 2026 to 2032.

Artificial intelligence in agriculture refers to the integrated use of machine learning, computer vision, and increasingly generative AI, deployed across cloud and edge environments, to convert heterogeneous agricultural data into actionable decisions and automated interventions. Typical data inputs include satellite and aerial imagery, drone scouting, in field sensor streams, machinery telematics, weather and soil datasets, and farm management records. The core objective is to improve yield and quality predictability, reduce water, fertilizer, and crop protection inputs, strengthen early warning for pest and disease pressure as well as weather risk, and shift agronomic operations from experience based practice to measurable, data driven precision management.

From a product form factor perspective, AI in agriculture is commonly delivered as a platform plus applications stack, spanning monitoring and diagnostic models, prescription generation and variable rate decisioning, autonomous and assisted machinery control, yield and quality forecasting, grading and inspection analytics, and farmer or agronomist copilots for advisory workflows. These capabilities are implemented through cloud analytics combined with edge devices to enable near real time sensing, decision execution, and feedback loops. Use cases cover precision planting and fertilization, smart irrigation, pest and weed detection with targeted treatment, greenhouse climate optimization, livestock health monitoring, and post harvest quality sorting and loss reduction, serving large farms, service providers, cooperatives, and smallholders through different commercial and deployment models.

Against a backdrop of climate volatility, input cost uncertainty, and persistent labor constraints, agriculture is accelerating adoption of sensing plus analytics as a structural pathway to productivity and sustainability gains. Higher frequency remote sensing, drone enabled field intelligence, connected equipment and IoT expansion, and the lowering of analytics barriers through generative AI are collectively moving AI in agriculture from pilots toward scaled deployment. As a result, AI is increasingly positioned as a primary growth engine within precision agriculture and automation, particularly where it can translate data into operational outcomes on a repeatable basis.

Commercialization is also evolving from single point software subscriptions toward ROI anchored, closed loop solutions focused on high frequency, high value operations such as variable rate application, pest and disease recognition with prescriptions, route and energy optimization, and continuous control in greenhouses and livestock operations. Major equipment and ag technology players are investing in automation and intelligent features, strengthening ecosystem collaboration across data, algorithms, and delivery. This improves bankability and exit potential, but it also raises the competitive bar around proprietary datasets, distribution reach, and field level implementation capability.

Key challenges remain material. Agricultural data are fragmented and highly context dependent by crop, region, and season, which increases the difficulty of model generalization and elevates the need for explainability and agronomic validation. Uneven connectivity and edge compute readiness at farm level, unclear data ownership and privacy expectations, responsibility boundaries when algorithms influence operational decisions, and interoperability constraints across equipment standards can all increase the cost of scaling. In addition, agtech funding cyclicality can slow expansion in certain segments, reinforcing the need for vendors to prove unit economics and field verified performance outcomes to unlock procurement at scale.

LPI (LP Information)' newest research report, the “Artificial Intelligence (AI) in Agriculture Industry Forecast” looks at past sales and reviews total world Artificial Intelligence (AI) in Agriculture sales in 2025, providing a comprehensive analysis by region and market sector of projected Artificial Intelligence (AI) in Agriculture sales for 2026 through 2032. With Artificial Intelligence (AI) in Agriculture sales broken down by region, market sector and sub-sector, this report provides a detailed analysis in US$ millions of the world Artificial Intelligence (AI) in Agriculture industry.

This Insight Report provides a comprehensive analysis of the global Artificial Intelligence (AI) in Agriculture landscape and highlights key trends related to product segmentation, company formation, revenue, and market share, latest development, and M&A activity. This report also analyses the strategies of leading global companies with a focus on Artificial Intelligence (AI) in Agriculture portfolios and capabilities, market entry strategies, market positions, and geographic footprints, to better understand these firms’ unique position in an accelerating global Artificial Intelligence (AI) in Agriculture market.

This Insight Report evaluates the key market trends, drivers, and affecting factors shaping the global outlook for Artificial Intelligence (AI) in Agriculture and breaks down the forecast by Type, by Application, geography, and market size to highlight emerging pockets of opportunity. With a transparent methodology based on hundreds of bottom-up qualitative and quantitative market inputs, this study forecast offers a highly nuanced view of the current state and future trajectory in the global Artificial Intelligence (AI) in Agriculture.

This report presents a comprehensive overview, market shares, and growth opportunities of Artificial Intelligence (AI) in Agriculture market by product type, application, key players and key regions and countries.

Segmentation by Type:

Machine Learning

Computer Vision

Generative Ai

Others

Segmentation by Application Scenario:

Cloud Based

Edge Based

Hybrid Cloud and Edge

Others

Segmentation by Crop and Livestock Focus:

Row Crops

Horticulture

Livestock

Others

Segmentation by Solution Form Factor:

Software Platforms

Embedded Ai Devices

Autonomous Machines and Robots

Others

Segmentation by Application:

Precision Crop Management

Smart Irrigation and Fertigation

Pest Disease and Weed Management

Others

This report also splits the market by region:

Americas

United States

Canada

Mexico

Brazil

APAC

China

Japan

Korea

Southeast Asia

India

Australia

Europe

Germany

France

UK

Italy

Russia

Middle East & Africa

Egypt

South Africa

Israel

Turkey

GCC Countries

The below companies that are profiled have been selected based on inputs gathered from primary experts and analyzing the company's coverage, product portfolio, its market penetration.

John Deere

CNH Industrial

AGCO Corporation

Kubota Corporation

CLAAS KGaA mbH

Trimble Inc.

Topcon Positioning Systems

Bayer

Corteva, Inc.

Valmont Industries, Inc.

DTN

Ever.Ag

Taranis

CropX

Gamaya

IBM

SAP

Monarch Tractor

Odd.Bot

AgEagle Aerial Systems Inc.

SZ DJI Technology Co., Ltd.

Guangzhou Xaircraft Technology Co., Ltd.

Zoomlion Smart Agriculture Co., Ltd.

YTO Group Corporation

Please note: The report will take approximately 2 business days to prepare and deliver.

Table of Contents

141 Pages
*This is a tentative TOC and the final deliverable is subject to change.*
1 Scope of the Report
2 Executive Summary
3 Artificial Intelligence (AI) in Agriculture Market Size by Player
4 Artificial Intelligence (AI) in Agriculture by Region
5 Americas
6 APAC
7 Europe
8 Middle East & Africa
9 Market Drivers, Challenges and Trends
10 Global Artificial Intelligence (AI) in Agriculture Market Forecast
11 Key Players Analysis
12 Research Findings and Conclusion
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.