
Global AI-Based Climate Modelling Market Size, Share & Industry Analysis Report By Component (Software and Services), By Application (Weather Forecasting, Disaster Prediction, Climate Risk Assessment, Carbon Emission Tracking, and Other Application), By T
Description
The Global AI-Based Climate Modelling Market size is expected to reach USD1.48 billion by 2032, rising at a market growth of 20.6% CAGR during the forecast period.
Key Highlights:
The AI-based climate modelling market is shaped by the rise of hybrid AI-physics techniques and large-scale foundational models trained on climate datasets, capable of tasks like long-range forecasting, high-resolution downscaling, and nowcasting. Beyond research, AI-driven forecasts are increasingly embedded into industries such as agriculture, urban planning, and logistics to assess risks, optimize operations, and build resilience against extreme weather. Public agencies are investing in AI-focused computational infrastructure, open-source ecosystems, and real-time digital platforms to democratize climate intelligence. The competitive landscape is defined by collaboration rather than rivalry, with governments, universities, and technology providers working together to develop interoperable AI systems that empower informed decision-making and climate-resilient strategies across sectors.
The major strategies followed by the market participants are Product Launches as the key developmental strategy to keep pace with the changing demands of end users. In June, 2025, NVIDIA Corporation unveiled cBottle, a generative AI model within its Earth-2 platform to create an interactive digital twin of Earth’s climate. Trained on 50 years of data, cBottle produces high-resolution, energy-efficient climate simulations to improve prediction, understanding, and response to extreme weather and climate change. Additionally, In June, 2025, Google LLC unveiled a hybrid AI-physics model that merges traditional climate simulations with generative AI to produce detailed, local climate risk forecasts at 10 km resolution. This innovative downscaling method improves accuracy, reduces computational costs by up to 85%, and supports better regional climate planning and disaster preparedness.
Based on the Analysis presented in the KBV Cardinal matrix; Google LLC, Microsoft Corporation, NVIDIA Corporation, and Amazon Web Services, Inc. are the forerunners in the AI-Based Climate Modelling Market. Companies such as IBM Corporation, ClimateAi, and Jupiter Intelligence are some of the key innovators in AI-Based Climate Modelling Market. In May, 2025, ClimateAi unveiled FICE, the world’s first AI model linking climate and economic data to predict how extreme weather impacts consumer spending and business revenue. Combining hyper-local weather insights with macroeconomic trends, FICE helps companies and governments plan for climate risks, drive resilience, and uncover growth opportunities.
COVID 19 Impact Analysis
The COVID-19 pandemic messed up the AI-based climate modeling market by stopping field research, data collection, and infrastructure development because of lockdowns and travel restrictions. This made it harder to calibrate and validate models. Even though these problems arose, the crisis sped up the shift to digital technologies, with more reliance on historical datasets, satellite images, cloud computing, and machine learning platforms to keep climate simulations going from a distance. Governments and policymakers are putting more emphasis on AI-driven climate models for planning for resilience. At the same time, partnerships between public agencies, researchers, and technology providers are making open-access platforms more popular. In general, the pandemic made climate modeling stronger in terms of innovation, remote operability, and long-term adaptability, even though short-term disruptions slowed progress. In conclusion, the COVID-19 pandemic, though disruptive, accelerated digital transformation in AI-based climate modelling, enhancing long-term resilience and adaptability in global climate research.
Component Outlook
Based on Component, the Global AI-Based Climate Modelling Market is segmented into Software and Services. The services segment procured 30.2% revenue share in the market in 2024. Services are vital for organizations that lack the technical expertise to deploy and operate advanced AI tools independently. Service providers assist clients in integrating modelling tools into existing systems, training personnel, and ensuring continuous system optimization. With the growing need for localized climate insights and strategic climate risk planning, demand for professional services is expected to remain robust across both public and private sector applications.
Application Outlook
On the Basis of Application, the market is segmented into Weather Forecasting, Disaster Prediction, Climate Risk Assessment, Carbon Emission Tracking, and Other Application. The disaster prediction segment recorded 18.3% revenue share in the market in 2024. AI-powered climate models can identify early warning signals, simulate impact scenarios, and support emergency response planning. Governments and humanitarian organizations are increasingly adopting these tools to enhance preparedness and reduce loss of life and property during extreme weather events.
Regional Outlook
Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA.
The North America segment recorded 39.3% revenue share in the market in 2024. The AI-Based Climate Modelling Market is witnessing prominent growth in North America and the European region because of advanced research infrastructure, significant funding from governments, collaborations between universities, private tech firms, and public agencies. Market in North American countries also benefits from programs held by organizations like NOAA, NASA, AI for wildfire prediction, disaster response, and high-resolution weather forecasting. Furthermore, Europe is also having a promising rise in the market with initiatives like Destination Earth, European Green Deal that promote the development of AI-based “digital-twins” with aim of planning climate-neutral strategies. Both North America as well as Europe are witnessing high adoption in agriculture, energy, and insurance industries with a major focus on transparency, model interpretability and ethical use of AI in environmental decision-making.
The Asia-Pacific and LAMEA region are also seeing the expansion of the AI-Based Climate Modelling Market because of increasing climate vulnerability and rising infrastructure investments. In Asian countries such as Japan, India, Australia, and China, AI-based modelling is being used for monsoon forecasting, agricultural optimization, flood prediction, and urban climate resilience planning. In addition to this, the requirement to address droughts, water scarcity, and heatwaves is raising the usage of AI-based climate models in the LAMEA region. Artificial intelligence is being implemented in the region for regional agricultural planning systems and disaster management. Rising collaborations between cloud-based AI platforms, global agencies, and donor-funded climate projects are supporting the expanding adoption of AI-based climate modelling and capacity building.
Market Competition and Attributes
The AI-based climate modelling market is witnessing intensifying competition as both established technology providers and emerging innovators strive to deliver advanced solutions for accurate forecasting, risk assessment, and sustainability planning. Competition is driven by the growing demand for precise climate predictions to address extreme weather events, policy compliance, and corporate sustainability initiatives. Players are differentiating themselves through specialized AI algorithms, high-performance computing integration, and the ability to process large, complex datasets from satellites, sensors, and historical records. The market also sees rising collaboration with academic institutions and government bodies to improve model transparency and reliability. With increasing emphasis on decarbonization and ESG reporting, the competitive landscape is shaped by innovation, scalability, and the ability to provide actionable, real-time insights.
Recent Strategies Deployed in the Market
By Component
Key Highlights:
- The North America AI-Based Climate Modelling market dominated the Global Market in 2024, accounting for a 39.30% revenue share in 2024.
- The US AI-Based Climate Modelling market is expected to continue its dominance in North America region, thereby reaching a market size of 401.10 million by 2032.
- Among the various Application segments, the Weather Forecasting segment dominated the global market, contributing a revenue share of 68.3% in 2024.
- In terms of the Component segmentation, the Software segment is projected to dominate the global market with the projected revenue share of 61.48%m in 2032.
- Machine Learning led the Technology segments in 2024, capturing a 40.22% revenue share and is projected to continue its dominance during projected period.
The AI-based climate modelling market is shaped by the rise of hybrid AI-physics techniques and large-scale foundational models trained on climate datasets, capable of tasks like long-range forecasting, high-resolution downscaling, and nowcasting. Beyond research, AI-driven forecasts are increasingly embedded into industries such as agriculture, urban planning, and logistics to assess risks, optimize operations, and build resilience against extreme weather. Public agencies are investing in AI-focused computational infrastructure, open-source ecosystems, and real-time digital platforms to democratize climate intelligence. The competitive landscape is defined by collaboration rather than rivalry, with governments, universities, and technology providers working together to develop interoperable AI systems that empower informed decision-making and climate-resilient strategies across sectors.
The major strategies followed by the market participants are Product Launches as the key developmental strategy to keep pace with the changing demands of end users. In June, 2025, NVIDIA Corporation unveiled cBottle, a generative AI model within its Earth-2 platform to create an interactive digital twin of Earth’s climate. Trained on 50 years of data, cBottle produces high-resolution, energy-efficient climate simulations to improve prediction, understanding, and response to extreme weather and climate change. Additionally, In June, 2025, Google LLC unveiled a hybrid AI-physics model that merges traditional climate simulations with generative AI to produce detailed, local climate risk forecasts at 10 km resolution. This innovative downscaling method improves accuracy, reduces computational costs by up to 85%, and supports better regional climate planning and disaster preparedness.
Based on the Analysis presented in the KBV Cardinal matrix; Google LLC, Microsoft Corporation, NVIDIA Corporation, and Amazon Web Services, Inc. are the forerunners in the AI-Based Climate Modelling Market. Companies such as IBM Corporation, ClimateAi, and Jupiter Intelligence are some of the key innovators in AI-Based Climate Modelling Market. In May, 2025, ClimateAi unveiled FICE, the world’s first AI model linking climate and economic data to predict how extreme weather impacts consumer spending and business revenue. Combining hyper-local weather insights with macroeconomic trends, FICE helps companies and governments plan for climate risks, drive resilience, and uncover growth opportunities.
COVID 19 Impact Analysis
The COVID-19 pandemic messed up the AI-based climate modeling market by stopping field research, data collection, and infrastructure development because of lockdowns and travel restrictions. This made it harder to calibrate and validate models. Even though these problems arose, the crisis sped up the shift to digital technologies, with more reliance on historical datasets, satellite images, cloud computing, and machine learning platforms to keep climate simulations going from a distance. Governments and policymakers are putting more emphasis on AI-driven climate models for planning for resilience. At the same time, partnerships between public agencies, researchers, and technology providers are making open-access platforms more popular. In general, the pandemic made climate modeling stronger in terms of innovation, remote operability, and long-term adaptability, even though short-term disruptions slowed progress. In conclusion, the COVID-19 pandemic, though disruptive, accelerated digital transformation in AI-based climate modelling, enhancing long-term resilience and adaptability in global climate research.
Component Outlook
Based on Component, the Global AI-Based Climate Modelling Market is segmented into Software and Services. The services segment procured 30.2% revenue share in the market in 2024. Services are vital for organizations that lack the technical expertise to deploy and operate advanced AI tools independently. Service providers assist clients in integrating modelling tools into existing systems, training personnel, and ensuring continuous system optimization. With the growing need for localized climate insights and strategic climate risk planning, demand for professional services is expected to remain robust across both public and private sector applications.
Application Outlook
On the Basis of Application, the market is segmented into Weather Forecasting, Disaster Prediction, Climate Risk Assessment, Carbon Emission Tracking, and Other Application. The disaster prediction segment recorded 18.3% revenue share in the market in 2024. AI-powered climate models can identify early warning signals, simulate impact scenarios, and support emergency response planning. Governments and humanitarian organizations are increasingly adopting these tools to enhance preparedness and reduce loss of life and property during extreme weather events.
Regional Outlook
Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA.
The North America segment recorded 39.3% revenue share in the market in 2024. The AI-Based Climate Modelling Market is witnessing prominent growth in North America and the European region because of advanced research infrastructure, significant funding from governments, collaborations between universities, private tech firms, and public agencies. Market in North American countries also benefits from programs held by organizations like NOAA, NASA, AI for wildfire prediction, disaster response, and high-resolution weather forecasting. Furthermore, Europe is also having a promising rise in the market with initiatives like Destination Earth, European Green Deal that promote the development of AI-based “digital-twins” with aim of planning climate-neutral strategies. Both North America as well as Europe are witnessing high adoption in agriculture, energy, and insurance industries with a major focus on transparency, model interpretability and ethical use of AI in environmental decision-making.
The Asia-Pacific and LAMEA region are also seeing the expansion of the AI-Based Climate Modelling Market because of increasing climate vulnerability and rising infrastructure investments. In Asian countries such as Japan, India, Australia, and China, AI-based modelling is being used for monsoon forecasting, agricultural optimization, flood prediction, and urban climate resilience planning. In addition to this, the requirement to address droughts, water scarcity, and heatwaves is raising the usage of AI-based climate models in the LAMEA region. Artificial intelligence is being implemented in the region for regional agricultural planning systems and disaster management. Rising collaborations between cloud-based AI platforms, global agencies, and donor-funded climate projects are supporting the expanding adoption of AI-based climate modelling and capacity building.
Market Competition and Attributes
The AI-based climate modelling market is witnessing intensifying competition as both established technology providers and emerging innovators strive to deliver advanced solutions for accurate forecasting, risk assessment, and sustainability planning. Competition is driven by the growing demand for precise climate predictions to address extreme weather events, policy compliance, and corporate sustainability initiatives. Players are differentiating themselves through specialized AI algorithms, high-performance computing integration, and the ability to process large, complex datasets from satellites, sensors, and historical records. The market also sees rising collaboration with academic institutions and government bodies to improve model transparency and reliability. With increasing emphasis on decarbonization and ESG reporting, the competitive landscape is shaped by innovation, scalability, and the ability to provide actionable, real-time insights.
Recent Strategies Deployed in the Market
- Jul-2025: Tomorrow.io teamed up with Palantir to deliver AI-driven weather forecasts for defense, government, and enterprise clients. Tomorrow.io, using AI and satellite data, joins Palantir’s FedStart program to expand within the U.S. federal sector. This collaboration enhances weather modeling for operational decisions during extreme weather events.
- May-2025: Microsoft Corporation unveiled Aurora, a powerful AI model that predicts weather, air quality, typhoons, and other atmospheric events more accurately and quickly than traditional methods. Aurora outperformed global forecasting centers in 91% of tests, delivering lifesaving, precise predictions in seconds instead of hours, revolutionizing weather forecasting.
- May-2025: ClimateAi unveiled FICE, the world’s first AI model linking climate and economic data to predict how extreme weather impacts consumer spending and business revenue. Combining hyper-local weather insights with macroeconomic trends, FICE helps companies and governments plan for climate risks, drive resilience, and uncover growth opportunities.
- Sep-2024: NVIDIA Corporation teamed up with G42 to develop advanced climate solutions using NVIDIA’s Earth-2 platform. This collaboration aims to deliver next-generation AI-powered climate modeling and digital twin technologies, helping improve prediction, preparedness, and response to climate change impacts while supporting global sustainability and resilience goals from Abu Dhabi, UAE.
- Jun-2024: Jupiter Intelligence unveiled Jupiter AI, a generative AI tool that accelerates climate risk analysis for businesses. Integrated with ClimateScore Global, it provides easy, conversational access to detailed climate impact insights on physical assets and portfolios, enabling faster, data-driven decisions to enhance climate resilience without requiring data science expertise.
- Mar-2024: NVIDIA Corporation unveiled new Earth-2 climate digital twin platforms that uses AI and generative models like CorrDiff to create ultra-high-resolution, energy-efficient weather and climate simulations. Early adopters include Taiwan’s Central Weather Administration and The Weather Company, aiming to improve disaster preparedness and global forecasting at unprecedented speed and scale.
- NVIDIA Corporation
- IBM Corporation
- Microsoft Corporation
- Google LLC
- Amazon Web Services, Inc. (Amazon.com, Inc.)
- AccuWeather, Inc.
- ClimateAi
- Tomorrow.io
- The Climate Corporation
- Jupiter Intelligence
By Component
- Software
- Services
- Weather Forecasting
- Disaster Prediction
- Climate Risk Assessment
- Carbon Emission Tracking
- Other Application
- Machine Learning
- Deep Learning
- Computer Vision
- Other Technology
- North America
- US
- Canada
- Mexico
- Rest of North America
- Europe
- Germany
- UK
- France
- Russia
- Spain
- Italy
- Rest of Europe
- Asia Pacific
- China
- Japan
- India
- South Korea
- Singapore
- Malaysia
- Rest of Asia Pacific
- LAMEA
- Brazil
- Argentina
- UAE
- Saudi Arabia
- South Africa
- Nigeria
- Rest of LAMEA
Table of Contents
405 Pages
- Chapter 1. Market Scope & Methodology
- 1.1 Market Definition
- 1.2 Objectives
- 1.3 Market Scope
- 1.4 Segmentation
- 1.4.1 Global AI-Based Climate Modelling Market, by Component
- 1.4.2 Global AI-Based Climate Modelling Market, by Application
- 1.4.3 Global AI-Based Climate Modelling Market, by Technology
- 1.4.4 Global AI-Based Climate Modelling Market, by Geography
- 1.5 Methodology for the research
- Chapter 2. Market at a Glance
- 2.1 Key Highlights
- Chapter 3. Market Overview
- 3.1 Introduction
- 3.1.1 Overview
- 3.1.1.1 Market Composition and Scenario
- 3.2 Key Factors Impacting the Market
- 3.2.1 Market Drivers
- 3.2.2 Market Restraints
- 3.2.3 Market Opportunities
- 3.2.4 Market Challenges
- Chapter 4. Market Trends - AI-Based Climate Modelling Market
- Chapter 5. State of Competition - AI-Based Climate Modelling Market
- Chapter 6. PLC (Product Life Cycle) - AI-Based Climate Modelling Market
- Chapter 7. Market Consolidation - AI-Based Climate Modelling Market
- Chapter 8. Competition Analysis - Global
- 8.1 KBV Cardinal Matrix
- 8.2 Recent Industry Wide Strategic Developments
- 8.2.1 Partnerships, Collaborations and Agreements
- 8.2.2 Product Launches and Product Expansions
- 8.3 Market Share Analysis, 2024
- 8.4 Top Winning Strategies
- 8.4.1 Key Leading Strategies: Percentage Distribution (2021-2025)
- 8.4.2 Key Strategic Move: (Product Launches and Product Expansions : 2024, Mar – 2025, Jun) Leading Players
- 8.5 Porter Five Forces Analysis
- Chapter 9. Value Chain Analysis of AI-Based Climate Modelling Market
- 9.1 Research & Data Acquisition
- 9.2 Algorithm & Model Development
- 9.3 Software Engineering & Platform Development
- 9.4 System Integration & Customization
- 9.5 Deployment & Implementation
- 9.6 Monitoring, Maintenance & Continuous Training
- 9.7 Policy Feedback & Impact Assessment
- Chapter 10. Key Customer Criteria - AI-Based Climate Modelling Market
- Chapter 11. Global AI-Based Climate Modelling Market by Component
- 11.1 Global Software Market by Region
- 11.2 Global Services Market by Region
- Chapter 12. Global AI-Based Climate Modelling Market by Application
- 12.1 Global Weather Forecasting Market by Region
- 12.2 Global Disaster Prediction Market by Region
- 12.3 Global Climate Risk Assessment Market by Region
- 12.4 Global Carbon Emission Tracking Market by Region
- 12.5 Global Other Application Market by Region
- Chapter 13. Global AI-Based Climate Modelling Market by Technology
- 13.1 Global Machine Learning Market by Region
- 13.2 Global Deep Learning Market by Region
- 13.3 Global Computer Vision Market by Region
- 13.4 Global Other Technology Market by Region
- Chapter 14. Global AI-Based Climate Modelling Market by Region
- 14.1 North America AI-Based Climate Modelling Market
- 14.1.1 Market Drivers
- 14.1.2 Market Restraints
- 14.1.3 Market Opportunities
- 14.1.4 Market Challenges
- 14.1.5 Market Trends North America AI-Based Climate Modelling Market
- 14.1.6 State of Competition North America AI-Based Climate Modelling Market
- 14.1.7 North America AI-Based Climate Modelling Market by Component
- 14.1.7.1 North America Software Market by Region
- 14.1.7.2 North America Services Market by Region
- 14.1.8 North America AI-Based Climate Modelling Market by Application
- 14.1.8.1 North America Weather Forecasting Market by Country
- 14.1.8.2 North America Disaster Prediction Market by Country
- 14.1.8.3 North America Climate Risk Assessment Market by Country
- 14.1.8.4 North America Carbon Emission Tracking Market by Country
- 14.1.8.5 North America Other Application Market by Country
- 14.1.9 North America AI-Based Climate Modelling Market by Technology
- 14.1.9.1 North America Machine Learning Market by Country
- 14.1.9.2 North America Deep Learning Market by Country
- 14.1.9.3 North America Computer Vision Market by Country
- 14.1.9.4 North America Other Technology Market by Country
- 14.1.10 North America AI-Based Climate Modelling Market by Country
- 14.1.10.1 US AI-Based Climate Modelling Market
- 14.1.10.1.1 US AI-Based Climate Modelling Market by Component
- 14.1.10.1.2 US AI-Based Climate Modelling Market by Application
- 14.1.10.1.3 US AI-Based Climate Modelling Market by Technology
- 14.1.10.2 Canada AI-Based Climate Modelling Market
- 14.1.10.2.1 Canada AI-Based Climate Modelling Market by Component
- 14.1.10.2.2 Canada AI-Based Climate Modelling Market by Application
- 14.1.10.2.3 Canada AI-Based Climate Modelling Market by Technology
- 14.1.10.3 Mexico AI-Based Climate Modelling Market
- 14.1.10.3.1 Mexico AI-Based Climate Modelling Market by Component
- 14.1.10.3.2 Mexico AI-Based Climate Modelling Market by Application
- 14.1.10.3.3 Mexico AI-Based Climate Modelling Market by Technology
- 14.1.10.4 Rest of North America AI-Based Climate Modelling Market
- 14.1.10.4.1 Rest of North America AI-Based Climate Modelling Market by Component
- 14.1.10.4.2 Rest of North America AI-Based Climate Modelling Market by Application
- 14.1.10.4.3 Rest of North America AI-Based Climate Modelling Market by Technology
- 14.2 Europe AI-Based Climate Modelling Market
- 14.2.1 Market Drivers
- 14.2.2 Market Restraints
- 14.2.3 Market Opportunities
- 14.2.4 Market Challenges
- 14.2.5 Market Trends - Europe AI-Based Climate Modelling Market
- 14.2.6 State of Competition Europe AI-Based Climate Modelling Market
- 14.2.7 Europe AI-Based Climate Modelling Market by Component
- 14.2.7.1 Europe Software Market by Country
- 14.2.7.2 Europe Services Market by Country
- 14.2.8 Europe AI-Based Climate Modelling Market by Application
- 14.2.8.1 Europe Weather Forecasting Market by Country
- 14.2.8.2 Europe Disaster Prediction Market by Country
- 14.2.8.3 Europe Climate Risk Assessment Market by Country
- 14.2.8.4 Europe Carbon Emission Tracking Market by Country
- 14.2.8.5 Europe Other Application Market by Country
- 14.2.9 Europe AI-Based Climate Modelling Market by Technology
- 14.2.9.1 Europe Machine Learning Market by Country
- 14.2.9.2 Europe Deep Learning Market by Country
- 14.2.9.3 Europe Computer Vision Market by Country
- 14.2.9.4 Europe Other Technology Market by Country
- 14.2.10 Europe AI-Based Climate Modelling Market by Country
- 14.2.10.1 Germany AI-Based Climate Modelling Market
- 14.2.10.1.1 Germany AI-Based Climate Modelling Market by Component
- 14.2.10.1.2 Germany AI-Based Climate Modelling Market by Application
- 14.2.10.1.3 Germany AI-Based Climate Modelling Market by Technology
- 14.2.10.2 UK AI-Based Climate Modelling Market
- 14.2.10.2.1 UK AI-Based Climate Modelling Market by Component
- 14.2.10.2.2 UK AI-Based Climate Modelling Market by Application
- 14.2.10.2.3 UK AI-Based Climate Modelling Market by Technology
- 14.2.10.3 France AI-Based Climate Modelling Market
- 14.2.10.3.1 France AI-Based Climate Modelling Market by Component
- 14.2.10.3.2 France AI-Based Climate Modelling Market by Application
- 14.2.10.3.3 France AI-Based Climate Modelling Market by Technology
- 14.2.10.4 Russia AI-Based Climate Modelling Market
- 14.2.10.4.1 Russia AI-Based Climate Modelling Market by Component
- 14.2.10.4.2 Russia AI-Based Climate Modelling Market by Application
- 14.2.10.4.3 Russia AI-Based Climate Modelling Market by Technology
- 14.2.10.5 Spain AI-Based Climate Modelling Market
- 14.2.10.5.1 Spain AI-Based Climate Modelling Market by Component
- 14.2.10.5.2 Spain AI-Based Climate Modelling Market by Application
- 14.2.10.5.3 Spain AI-Based Climate Modelling Market by Technology
- 14.2.10.6 Italy AI-Based Climate Modelling Market
- 14.2.10.6.1 Italy AI-Based Climate Modelling Market by Component
- 14.2.10.6.2 Italy AI-Based Climate Modelling Market by Application
- 14.2.10.6.3 Italy AI-Based Climate Modelling Market by Technology
- 14.2.10.7 Rest of Europe AI-Based Climate Modelling Market
- 14.2.10.7.1 Rest of Europe AI-Based Climate Modelling Market by Component
- 14.2.10.7.2 Rest of Europe AI-Based Climate Modelling Market by Application
- 14.2.10.7.3 Rest of Europe AI-Based Climate Modelling Market by Technology
- 14.3 Asia Pacific AI-Based Climate Modelling Market
- 14.3.1 Market Drivers
- 14.3.2 Market Restraints
- 14.3.3 Market Opportunities
- 14.3.4 Market Challenges
- 14.3.5 Market Trends - Asia Pacific AI-Based Climate Modelling Market
- 14.3.6 State of Competition Asia Pacific AI-Based Climate Modelling Market
- 14.3.7 Asia Pacific AI-Based Climate Modelling Market by Component
- 14.3.7.1 Asia Pacific Software Market by Country
- 14.3.7.2 Asia Pacific Services Market by Country
- 14.3.8 Asia Pacific AI-Based Climate Modelling Market by Application
- 14.3.8.1 Asia Pacific Weather Forecasting Market by Country
- 14.3.8.2 Asia Pacific Disaster Prediction Market by Country
- 14.3.8.3 Asia Pacific Climate Risk Assessment Market by Country
- 14.3.8.4 Asia Pacific Carbon Emission Tracking Market by Country
- 14.3.8.5 Asia Pacific Other Application Market by Country
- 14.3.9 Asia Pacific AI-Based Climate Modelling Market by Technology
- 14.3.9.1 Asia Pacific Machine Learning Market by Country
- 14.3.9.2 Asia Pacific Deep Learning Market by Country
- 14.3.9.3 Asia Pacific Computer Vision Market by Country
- 14.3.9.4 Asia Pacific Other Technology Market by Country
- 14.3.10 Asia Pacific AI-Based Climate Modelling Market by Country
- 14.3.10.1 China AI-Based Climate Modelling Market
- 14.3.10.1.1 China AI-Based Climate Modelling Market by Component
- 14.3.10.1.2 China AI-Based Climate Modelling Market by Application
- 14.3.10.1.3 China AI-Based Climate Modelling Market by Technology
- 14.3.10.2 Japan AI-Based Climate Modelling Market
- 14.3.10.2.1 Japan AI-Based Climate Modelling Market by Component
- 14.3.10.2.2 Japan AI-Based Climate Modelling Market by Application
- 14.3.10.2.3 Japan AI-Based Climate Modelling Market by Technology
- 14.3.10.3 India AI-Based Climate Modelling Market
- 14.3.10.3.1 India AI-Based Climate Modelling Market by Component
- 14.3.10.3.2 India AI-Based Climate Modelling Market by Application
- 14.3.10.3.3 India AI-Based Climate Modelling Market by Technology
- 14.3.10.4 South Korea AI-Based Climate Modelling Market
- 14.3.10.4.1 South Korea AI-Based Climate Modelling Market by Component
- 14.3.10.4.2 South Korea AI-Based Climate Modelling Market by Application
- 14.3.10.4.3 South Korea AI-Based Climate Modelling Market by Technology
- 14.3.10.5 Singapore AI-Based Climate Modelling Market
- 14.3.10.5.1 Singapore AI-Based Climate Modelling Market by Component
- 14.3.10.5.2 Singapore AI-Based Climate Modelling Market by Application
- 14.3.10.5.3 Singapore AI-Based Climate Modelling Market by Technology
- 14.3.10.6 Malaysia AI-Based Climate Modelling Market
- 14.3.10.6.1 Malaysia AI-Based Climate Modelling Market by Component
- 14.3.10.6.2 Malaysia AI-Based Climate Modelling Market by Application
- 14.3.10.6.3 Malaysia AI-Based Climate Modelling Market by Technology
- 14.3.10.7 Rest of Asia Pacific AI-Based Climate Modelling Market
- 14.3.10.7.1 Rest of Asia Pacific AI-Based Climate Modelling Market by Component
- 14.3.10.7.2 Rest of Asia Pacific AI-Based Climate Modelling Market by Application
- 14.3.10.7.3 Rest of Asia Pacific AI-Based Climate Modelling Market by Technology
- 14.4 LAMEA AI-Based Climate Modelling Market
- 14.4.1 Market Drivers
- 14.4.2 Market Restraints
- 14.4.3 Market Opportunities
- 14.4.4 Market Challenges
- 14.4.5 Market Trends LAMEA AI-Based Climate Modelling Market
- 14.4.6 State of Competition LAMEA AI-Based Climate Modelling Market
- 14.4.7 LAMEA AI-Based Climate Modelling Market by Component
- 14.4.7.1 LAMEA Software Market by Country
- 14.4.7.2 LAMEA Services Market by Country
- 14.4.8 LAMEA AI-Based Climate Modelling Market by Application
- 14.4.8.1 LAMEA Weather Forecasting Market by Country
- 14.4.8.2 LAMEA Disaster Prediction Market by Country
- 14.4.8.3 LAMEA Climate Risk Assessment Market by Country
- 14.4.8.4 LAMEA Carbon Emission Tracking Market by Country
- 14.4.8.5 LAMEA Other Application Market by Country
- 14.4.9 LAMEA AI-Based Climate Modelling Market by Technology
- 14.4.9.1 LAMEA Machine Learning Market by Country
- 14.4.9.2 LAMEA Deep Learning Market by Country
- 14.4.9.3 LAMEA Computer Vision Market by Country
- 14.4.9.4 LAMEA Other Technology Market by Country
- 14.4.10 LAMEA AI-Based Climate Modelling Market by Country
- 14.4.10.1 Brazil AI-Based Climate Modelling Market
- 14.4.10.1.1 Brazil AI-Based Climate Modelling Market by Component
- 14.4.10.1.2 Brazil AI-Based Climate Modelling Market by Application
- 14.4.10.1.3 Brazil AI-Based Climate Modelling Market by Technology
- 14.4.10.2 Argentina AI-Based Climate Modelling Market
- 14.4.10.2.1 Argentina AI-Based Climate Modelling Market by Component
- 14.4.10.2.2 Argentina AI-Based Climate Modelling Market by Application
- 14.4.10.2.3 Argentina AI-Based Climate Modelling Market by Technology
- 14.4.10.3 UAE AI-Based Climate Modelling Market
- 14.4.10.3.1 UAE AI-Based Climate Modelling Market by Component
- 14.4.10.3.2 UAE AI-Based Climate Modelling Market by Application
- 14.4.10.3.3 UAE AI-Based Climate Modelling Market by Technology
- 14.4.10.4 Saudi Arabia AI-Based Climate Modelling Market
- 14.4.10.4.1 Saudi Arabia AI-Based Climate Modelling Market by Component
- 14.4.10.4.2 Saudi Arabia AI-Based Climate Modelling Market by Application
- 14.4.10.4.3 Saudi Arabia AI-Based Climate Modelling Market by Technology
- 14.4.10.5 South Africa AI-Based Climate Modelling Market
- 14.4.10.5.1 South Africa AI-Based Climate Modelling Market by Component
- 14.4.10.5.2 South Africa AI-Based Climate Modelling Market by Application
- 14.4.10.5.3 South Africa AI-Based Climate Modelling Market by Technology
- 14.4.10.6 Nigeria AI-Based Climate Modelling Market
- 14.4.10.6.1 Nigeria AI-Based Climate Modelling Market by Component
- 14.4.10.6.2 Nigeria AI-Based Climate Modelling Market by Application
- 14.4.10.6.3 Nigeria AI-Based Climate Modelling Market by Technology
- 14.4.10.7 Rest of LAMEA AI-Based Climate Modelling Market
- 14.4.10.7.1 Rest of LAMEA AI-Based Climate Modelling Market by Component
- 14.4.10.7.2 Rest of LAMEA AI-Based Climate Modelling Market by Application
- 14.4.10.7.3 Rest of LAMEA AI-Based Climate Modelling Market by Technology
- Chapter 15. Company Profiles
- 15.1 NVIDIA Corporation
- 15.1.1 Company Overview
- 15.1.2 Financial Analysis
- 15.1.3 Segmental and Regional Analysis
- 15.1.4 Research & Development Expenses
- 15.1.5 Recent strategies and developments:
- 15.1.5.1 Partnerships, Collaborations, and Agreements:
- 15.1.5.2 Product Launches and Product Expansions:
- 15.1.6 SWOT Analysis
- 15.2 IBM Corporation
- 15.2.1 Company Overview
- 15.2.2 Financial Analysis
- 15.2.3 Regional & Segmental Analysis
- 15.2.4 Research & Development Expenses
- 15.2.5 SWOT Analysis
- 15.3 Microsoft Corporation
- 15.3.1 Company Overview
- 15.3.2 Financial Analysis
- 15.3.3 Segmental and Regional Analysis
- 15.3.4 Research & Development Expenses
- 15.3.5 Recent strategies and developments:
- 15.3.5.1 Partnerships, Collaborations, and Agreements:
- 15.3.5.2 Product Launches and Product Expansions:
- 15.3.6 SWOT Analysis
- 15.4 Google LLC
- 15.4.1 Company Overview
- 15.4.2 Financial Analysis
- 15.4.3 Segmental and Regional Analysis
- 15.4.4 Research & Development Expenses
- 15.4.5 Recent strategies and developments:
- 15.4.5.1 Product Launches and Product Expansions:
- 15.4.6 SWOT Analysis
- 15.5 Amazon Web Services, Inc. (Amazon.com, Inc.)
- 15.5.1 Company Overview
- 15.5.2 Financial Analysis
- 15.5.3 Segmental and Regional Analysis
- 15.5.4 SWOT Analysis
- 15.6 AccuWeather, Inc.
- 15.6.1 Company Overview
- 15.7 ClimateAi
- 15.7.1 Company Overview
- 15.7.2 Recent strategies and developments:
- 15.7.2.1 Product Launches and Product Expansions:
- 15.8 Tomorrow.io
- 15.8.1 Company Overview
- 15.8.2 Recent strategies and developments:
- 15.8.2.1 Partnerships, Collaborations, and Agreements:
- 15.9 The Climate Corporation (Bayer AG)
- 15.9.1 Company Overview
- 15.9.2 Financial Analysis
- 15.9.3 Segmental and Regional Analysis
- 15.9.4 Research & Development Expense
- 15.10. Jupiter Intelligence
- 15.10.1 Company Overview
- 15.10.2 Recent strategies and developments:
- 15.10.2.1 Product Launches and Product Expansions:
- Chapter 16. Winning Imperatives of AI-Based Climate Modelling Market
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.