Report cover image

Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Market Size, Share, Growth Drivers, Trends, Opportunities, Competitive Landscape & Forecast 2025–2030

Publisher Ken Research
Published Oct 10, 2025
Length 89 Pages
SKU # AMPS20596641

Description

Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Market Overview

The Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Market is valued at USD 1.2 billion, based on a five-year historical analysis. This growth is primarily driven by the increasing adoption of AI technologies in retail, enhancing customer experience through personalized recommendations and improving sales efficiency. The rise in e-commerce and digital transformation initiatives among retailers has further fueled the demand for advanced recommendation systems.

Key cities such as Riyadh, Jeddah, and Dammam dominate the market due to their robust retail infrastructure and high consumer spending. Riyadh, being the capital, serves as a commercial hub, while Jeddah's strategic port location facilitates international trade. Dammam's growing population and economic development contribute to the increasing demand for AI-powered retail solutions.

In 2023, the Saudi government implemented the "National Strategy for Data and Artificial Intelligence," which aims to enhance the use of AI across various sectors, including retail. This initiative encourages businesses to adopt AI technologies, providing a framework for innovation and investment in cloud-based solutions, thereby boosting the market for AI-powered recommendation engines.

Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Market Segmentation

By Type:

The market is segmented into various types of recommendation engines, including Product Recommendation Engines, Content Recommendation Engines, Personalized Marketing Engines, Predictive Analytics Engines, and Others. Among these, Product Recommendation Engines are leading the market due to their effectiveness in driving sales by suggesting relevant products to consumers based on their browsing and purchasing history. The increasing focus on enhancing customer experience and engagement has made these engines essential for retailers looking to optimize their sales strategies.

By End-User:

The end-user segmentation includes Fashion Retailers, Electronics Retailers, Grocery Retailers, Home Goods Retailers, and Others. Fashion Retailers dominate this segment as they leverage AI-powered recommendation engines to enhance customer engagement and drive sales through personalized shopping experiences. The growing trend of online shopping in the fashion industry has further accelerated the adoption of these technologies, making them crucial for retailers aiming to stay competitive in a rapidly evolving market.

Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Market Competitive Landscape

The Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Market is characterized by a dynamic mix of regional and international players. Leading participants such as SAP SE, Oracle Corporation, IBM Corporation, Microsoft Corporation, Salesforce.com, Inc., Adobe Inc., Google LLC, Amazon Web Services, Inc., Alibaba Group Holding Limited, SAP Ariba, SAS Institute Inc., Infosys Limited, Wipro Limited, Accenture plc, Cognizant Technology Solutions contribute to innovation, geographic expansion, and service delivery in this space.

SAP SE

1972

Walldorf, Germany

Oracle Corporation

1977

Redwood City, California, USA

IBM Corporation

1911

Armonk, New York, USA

Microsoft Corporation

1975

Redmond, Washington, USA

Salesforce.com, Inc.

1999

San Francisco, California, USA

Company

Establishment Year

Headquarters

Group Size (Large, Medium, or Small as per industry convention)

Revenue Growth Rate

Customer Acquisition Cost

Customer Retention Rate

Market Penetration Rate

Pricing Strategy

Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Market Industry Analysis

Growth Drivers

Increasing Demand for Personalized Shopping Experiences:

The retail sector in Saudi Arabia is witnessing a significant shift towards personalized shopping experiences, driven by consumer preferences. In future, the retail market is projected to reach approximately SAR 200 billion, with 60% of consumers expressing a desire for tailored recommendations. This demand is fueled by the increasing penetration of smartphones, which reached 95% in future, enabling consumers to access personalized services easily.

Growth of E-commerce Platforms:

E-commerce in Saudi Arabia is expected to grow to SAR 55 billion in future, reflecting a 10% increase from future. This growth is largely attributed to the rise of digital payment solutions and improved logistics. As more consumers turn to online shopping, retailers are increasingly adopting cloud-based AI-powered recommendation engines to enhance user experience and drive sales, capitalizing on the expanding digital marketplace.

Advancements in AI and Machine Learning Technologies:

The rapid evolution of AI and machine learning technologies is a key driver for the adoption of recommendation engines in retail. In future, the AI market in Saudi Arabia is projected to reach SAR 8 billion, with a focus on enhancing customer engagement through predictive analytics. Retailers are leveraging these technologies to analyze consumer behavior, leading to more effective and personalized marketing strategies that boost sales.

Market Challenges

Data Privacy Concerns:

As the use of AI-powered recommendation engines increases, so do concerns regarding data privacy. In future, 75% of consumers in Saudi Arabia are expected to prioritize data protection when engaging with online retailers. This growing apprehension poses a challenge for retailers, as they must navigate stringent data protection regulations while ensuring consumer trust and compliance with local laws.

High Implementation Costs:

The initial investment required for implementing cloud-based AI solutions can be a significant barrier for many retailers. In future, the average cost of deploying these systems is estimated at SAR 1.2 million, which may deter small and medium-sized enterprises from adopting such technologies. This challenge is compounded by the need for ongoing maintenance and updates, further straining financial resources.

Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Market Future Outlook

The future of the cloud-based AI-powered retail recommendation engines market in Saudi Arabia appears promising, driven by technological advancements and evolving consumer preferences. As retailers increasingly adopt omnichannel strategies, the integration of AI solutions will enhance customer engagement and satisfaction. Furthermore, the growing emphasis on data analytics will enable retailers to gain deeper insights into consumer behavior, fostering innovation and competitive advantage in the marketplace. The landscape is set for transformative growth, aligning with the Kingdom's Vision 2030 objectives.

Market Opportunities

Expansion into Underserved Retail Segments:

There is a significant opportunity for cloud-based AI solutions to penetrate underserved retail segments, such as local artisans and small businesses. By providing tailored recommendation engines, these retailers can enhance their visibility and customer engagement, potentially increasing their market share in a rapidly evolving digital landscape.

Partnerships with Local E-commerce Platforms:

Collaborating with local e-commerce platforms presents a lucrative opportunity for retailers to leverage existing customer bases. By integrating AI-powered recommendation engines, these partnerships can enhance user experience and drive sales, ultimately contributing to the growth of the e-commerce ecosystem in Saudi Arabia.

Please Note: It will take 5-7 business days to complete the report upon order confirmation.

Table of Contents

89 Pages
1. Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Size, Share, Growth Drivers, Trends, Opportunities, Competitive Landscape & – Market Overview
1.1. Definition and Scope
1.2. Market Taxonomy
1.3. Market Growth Rate
1.4. Market Segmentation Overview
2. Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Size, Share, Growth Drivers, Trends, Opportunities, Competitive Landscape & – Market Size (in USD Bn), 2019–2024
2.1. Historical Market Size
2.2. Year-on-Year Growth Analysis
2.3. Key Market Developments and Milestones
3. Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Size, Share, Growth Drivers, Trends, Opportunities, Competitive Landscape & – Market Analysis
3.1. Growth Drivers
3.1.1. Increasing demand for personalized shopping experiences
3.1.2. Growth of e-commerce platforms
3.1.3. Advancements in AI and machine learning technologies
3.1.4. Rising consumer expectations for real-time recommendations
3.2. Restraints
3.2.1. Data privacy concerns
3.2.2. High implementation costs
3.2.3. Integration with existing retail systems
3.2.4. Limited awareness among small retailers
3.3. Opportunities
3.3.1. Expansion into underserved retail segments
3.3.2. Partnerships with local e-commerce platforms
3.3.3. Development of mobile-based recommendation solutions
3.3.4. Leveraging big data analytics for enhanced insights
3.4. Trends
3.4.1. Increasing adoption of omnichannel retail strategies
3.4.2. Growth of subscription-based retail models
3.4.3. Enhanced focus on customer experience management
3.4.4. Utilization of social media for personalized marketing
3.5. Government Regulation
3.5.1. Data protection regulations
3.5.2. E-commerce laws
3.5.3. Consumer rights protection
3.5.4. Incentives for technology adoption in retail
3.6. SWOT Analysis
3.7. Stakeholder Ecosystem
3.8. Competition Ecosystem
4. Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Size, Share, Growth Drivers, Trends, Opportunities, Competitive Landscape & – Market Segmentation, 2024
4.1. By Type (in Value %)
4.1.1. Product Recommendation Engines
4.1.2. Content Recommendation Engines
4.1.3. Personalized Marketing Engines
4.1.4. Predictive Analytics Engines
4.1.5. Others
4.2. By End-User (in Value %)
4.2.1. Fashion Retailers
4.2.2. Electronics Retailers
4.2.3. Grocery Retailers
4.2.4. Home Goods Retailers
4.2.5. Others
4.3. By Sales Channel (in Value %)
4.3.1. Online Retail
4.3.2. Brick-and-Mortar Stores
4.3.3. Mobile Applications
4.3.4. Social Media Platforms
4.3.5. Others
4.4. By Deployment Model (in Value %)
4.4.1. Cloud-Based Solutions
4.4.2. On-Premises Solutions
4.4.3. Hybrid Solutions
4.5. By Industry Vertical (in Value %)
4.5.1. Fashion and Apparel
4.5.2. Electronics and Appliances
4.5.3. Food and Beverage
4.5.4. Health and Beauty
4.5.5. Others
4.6. By Customer Segment (in Value %)
4.6.1. B2C (Business to Consumer)
4.6.2. B2B (Business to Business)
5. Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Size, Share, Growth Drivers, Trends, Opportunities, Competitive Landscape & – Market Cross Comparison
5.1. Detailed Profiles of Major Companies
5.1.1. SAP SE
5.1.2. Oracle Corporation
5.1.3. IBM Corporation
5.1.4. Microsoft Corporation
5.1.5. Salesforce.com, Inc.
5.2. Cross Comparison Parameters
5.2.1. Revenue
5.2.2. Market Penetration Rate
5.2.3. Customer Acquisition Cost
5.2.4. Customer Retention Rate
5.2.5. Average Order Value
6. Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Size, Share, Growth Drivers, Trends, Opportunities, Competitive Landscape & – Market Regulatory Framework
6.1. Compliance Requirements and Audits
6.2. Certification Processes
7. Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Size, Share, Growth Drivers, Trends, Opportunities, Competitive Landscape & – Market Future Size (in USD Bn), 2025–2030
7.1. Future Market Size Projections
7.2. Key Factors Driving Future Market Growth
8. Saudi Arabia Cloud-Based AI-Powered Retail Recommendation Engines Size, Share, Growth Drivers, Trends, Opportunities, Competitive Landscape & – Market Future Segmentation, 2030
8.1. By Type (in Value %)
8.2. By End-User (in Value %)
8.3. By Sales Channel (in Value %)
8.4. By Deployment Model (in Value %)
8.5. By Industry Vertical (in Value %)
Disclaimer
Contact Us
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.