Report cover image

Indonesia AI in Logistics for Last-Mile E-Commerce Market

Publisher Ken Research
Published Oct 04, 2025
Length 95 Pages
SKU # AMPS20593422

Description

Indonesia AI in Logistics for Last-Mile E-Commerce Market Overview

The Indonesia AI in Logistics for Last-Mile E-Commerce Market is valued at USD 1.2 billion, based on a five-year historical analysis. This growth is primarily driven by the rapid expansion of e-commerce, increasing consumer demand for faster delivery options, and the adoption of AI technologies to enhance operational efficiency. The integration of AI in logistics has enabled companies to optimize routes, reduce delivery times, and improve customer satisfaction.

Key cities such as Jakarta, Surabaya, and Bandung dominate the market due to their high population density and significant e-commerce activity. Jakarta, as the capital, serves as a central hub for logistics operations, while Surabaya and Bandung are critical for regional distribution. The urban infrastructure and technological advancements in these cities further support the growth of AI-driven logistics solutions.

In 2023, the Indonesian government implemented a regulation aimed at enhancing the logistics sector's efficiency by promoting the use of AI technologies. This regulation encourages logistics companies to adopt AI solutions through tax incentives and grants, fostering innovation and improving service delivery in the last-mile segment.

Indonesia AI in Logistics for Last-Mile E-Commerce Market Segmentation

By Type:

The market is segmented into various types, including AI-Powered Route Optimization, Automated Sorting Systems, Delivery Drones, Smart Lockers, Last-Mile Delivery Software, and Others. Among these, AI-Powered Route Optimization is the leading sub-segment, driven by the need for efficient delivery routes that minimize costs and time. Companies are increasingly investing in AI technologies to enhance their logistics capabilities, leading to a significant rise in demand for this sub-segment.

By End-User:

The end-user segmentation includes B2C E-Commerce, B2B E-Commerce, Retail Chains, and Third-Party Logistics Providers. The B2C E-Commerce segment is the most dominant, fueled by the increasing number of online shoppers and the demand for quick delivery services. Retailers are leveraging AI technologies to streamline their logistics operations, ensuring timely deliveries and enhancing customer experiences.

Indonesia AI in Logistics for Last-Mile E-Commerce Market Competitive Landscape

The Indonesia AI in Logistics for Last-Mile E-Commerce Market is characterized by a dynamic mix of regional and international players. Leading participants such as Gojek, Grab, JNE Express, Tiki, Ninja Xpress, SiCepat, Anteraja, Deliveree, Lalamove, Kargo Technologies, Waresix, Paxel, Rappi, Qlue, Tada contribute to innovation, geographic expansion, and service delivery in this space.

Gojek

2010

Jakarta, Indonesia

Grab

2012

Singapore

JNE Express

1990

Jakarta, Indonesia

Tiki

1991

Jakarta, Indonesia

Ninja Xpress

2015

Jakarta, Indonesia

Company

Establishment Year

Headquarters

Group Size (Large, Medium, or Small as per industry convention)

Revenue Growth Rate

Customer Acquisition Cost

Delivery Efficiency Rate

Pricing Strategy

Customer Retention Rate

Indonesia AI in Logistics for Last-Mile E-Commerce Market Industry Analysis

Growth Drivers

Increasing E-Commerce Penetration:

Indonesia's e-commerce market is projected to reach $83 billion by 2025, driven by a 20% annual growth rate. The rise in internet penetration, which reached 78% in the future, has facilitated online shopping. With over 200 million internet users, the demand for efficient last-mile logistics is surging. This growth is further supported by the increasing smartphone adoption, which is expected to exceed 92% in the future, enhancing consumer access to e-commerce platforms.

Demand for Faster Delivery Services:

The average delivery time in Indonesia is currently around 3-5 days, but consumer expectations are shifting towards same-day delivery. A survey indicated that 62% of consumers prefer faster delivery options, prompting logistics companies to adopt AI solutions. The rise of urban centers, with over 51% of the population living in cities, intensifies the need for efficient last-mile delivery systems to meet these expectations, driving investments in AI technologies.

Advancements in AI Technology:

The AI market in Indonesia is expected to grow to $1.6 billion in the future, with logistics being a key sector. Innovations in machine learning and data analytics are enhancing route optimization and inventory management. Companies are increasingly leveraging AI to predict demand patterns, which can reduce operational costs by up to 31%. This technological advancement is crucial for improving efficiency in last-mile logistics, making it a significant growth driver in the industry.

Market Challenges

High Operational Costs:

The logistics sector in Indonesia faces operational costs averaging 26% of total revenue, significantly impacting profitability. Factors contributing to these costs include fuel prices, labor expenses, and maintenance of delivery vehicles. Additionally, the lack of economies of scale in rural areas exacerbates these challenges, making it difficult for companies to implement AI solutions effectively. This high cost structure poses a significant barrier to the growth of AI in last-mile logistics.

Regulatory Compliance Issues:

The logistics industry in Indonesia is subject to complex regulations, including transportation licensing and e-commerce taxation policies. In the future, over 42% of logistics companies reported challenges in navigating these regulations, which can lead to delays and increased costs. Compliance with data protection regulations is also critical, as non-compliance can result in fines and reputational damage. These regulatory hurdles hinder the adoption of AI technologies in last-mile logistics.

Indonesia AI in Logistics for Last-Mile E-Commerce Market Future Outlook

The future of AI in Indonesia's last-mile logistics is promising, driven by technological advancements and increasing consumer expectations. As urbanization continues, logistics networks will expand, necessitating innovative solutions to meet demand. The integration of AI with IoT will enhance operational efficiency, while partnerships with local e-commerce platforms will facilitate smoother logistics operations. Government initiatives aimed at digital transformation will further support the growth of AI technologies, positioning Indonesia as a leader in last-mile logistics innovation.

Market Opportunities

Expansion of Logistics Networks:

The Indonesian government plans to invest $32 billion in infrastructure development in the future, enhancing logistics networks. This investment will improve connectivity between urban and rural areas, creating opportunities for AI-driven logistics solutions. Companies can leverage this expansion to optimize delivery routes and reduce costs, ultimately improving service levels in last-mile delivery.

Integration of AI with IoT:

The growing adoption of IoT devices in logistics is expected to reach 1.3 billion units in the future. This integration will enable real-time tracking and data analysis, enhancing operational efficiency. Companies that adopt AI-driven IoT solutions can improve inventory management and customer satisfaction, positioning themselves competitively in the last-mile logistics market.

Please Note: It will take 5-7 business days to complete the report upon order confirmation.

Table of Contents

95 Pages
1. Indonesia AI in Logistics for Last-Mile E-Commerce Market Overview
1.1. Definition and Scope
1.2. Market Taxonomy
1.3. Market Growth Rate
1.4. Market Segmentation Overview
2. Indonesia AI in Logistics for Last-Mile E-Commerce Market Size (in USD Bn), 2019–2024
2.1. Historical Market Size
2.2. Year-on-Year Growth Analysis
2.3. Key Market Developments and Milestones
3. Indonesia AI in Logistics for Last-Mile E-Commerce Market Analysis
3.1. Growth Drivers
3.1.1 Increasing E-Commerce Penetration
3.1.2 Demand for Faster Delivery Services
3.1.3 Advancements in AI Technology
3.1.4 Urbanization and Infrastructure Development
3.2. Restraints
3.2.1 High Operational Costs
3.2.2 Regulatory Compliance Issues
3.2.3 Limited Infrastructure in Rural Areas
3.2.4 Data Privacy Concerns
3.3. Opportunities
3.3.1 Expansion of Logistics Networks
3.3.2 Integration of AI with IoT
3.3.3 Partnerships with Local E-Commerce Platforms
3.3.4 Government Initiatives for Digital Transformation
3.4. Trends
3.4.1 Rise of Autonomous Delivery Vehicles
3.4.2 Increased Use of Predictive Analytics
3.4.3 Growth of Last-Mile Delivery Startups
3.4.4 Focus on Sustainable Delivery Solutions
3.5. Government Regulation
3.5.1 E-Commerce Taxation Policies
3.5.2 Data Protection Regulations
3.5.3 Transportation and Logistics Licensing
3.5.4 Environmental Compliance Standards
3.6. SWOT Analysis
3.7. Stakeholder Ecosystem
3.8. Competition Ecosystem
4. Indonesia AI in Logistics for Last-Mile E-Commerce Market Segmentation, 2024
4.1. By Type (in Value %)
4.1.1 AI-Powered Route Optimization
4.1.2 Automated Sorting Systems
4.1.3 Delivery Drones
4.1.4 Smart Lockers
4.1.5 Last-Mile Delivery Software
4.1.6 Others
4.2. By End-User (in Value %)
4.2.1 B2C E-Commerce
4.2.2 B2B E-Commerce
4.2.3 Retail Chains
4.2.4 Third-Party Logistics Providers
4.3. By Distribution Mode (in Value %)
4.3.1 Direct Delivery
4.3.2 Click and Collect
4.3.3 Same-Day Delivery
4.3.4 Scheduled Delivery
4.4. By Sales Channel (in Value %)
4.4.1 Online Marketplaces
4.4.2 Company Websites
4.4.3 Mobile Applications
4.5. By Customer Segment (in Value %)
4.5.1 Individual Consumers
4.5.2 Small Businesses
4.5.3 Large Enterprises
4.6. By Policy Support (in Value %)
4.6.1 Government Subsidies
4.6.2 Tax Incentives
4.6.3 Regulatory Support Programs
5. Indonesia AI in Logistics for Last-Mile E-Commerce Market Cross Comparison
5.1. Detailed Profiles of Major Companies
5.1.1 Gojek
5.1.2 Grab
5.1.3 JNE Express
5.1.4 Tiki
5.1.5 Ninja Xpress
5.2. Cross Comparison Parameters
5.2.1 Revenue Growth Rate
5.2.2 Customer Acquisition Cost
5.2.3 Delivery Efficiency Rate
5.2.4 Average Delivery Time
5.2.5 Market Penetration Rate
6. Indonesia AI in Logistics for Last-Mile E-Commerce Market Regulatory Framework
6.1. Compliance Requirements and Audits
6.2. Certification Processes
7. Indonesia AI in Logistics for Last-Mile E-Commerce Market Future Size (in USD Bn), 2025–2030
7.1. Future Market Size Projections
7.2. Key Factors Driving Future Market Growth
8. Indonesia AI in Logistics for Last-Mile E-Commerce Market Future Segmentation, 2030
8.1. By Type (in Value %)
8.2. By End-User (in Value %)
8.3. By Distribution Mode (in Value %)
8.4. By Sales Channel (in Value %)
8.5. By Customer Segment (in Value %)
8.6. By Policy Support (in Value %)
Disclaimer
Contact Us
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.