Report cover image

GCC AI-Powered Banking Fraud Detection Analytics Market Size, Share & Forecast 2025–2030

Publisher Ken Research
Published Oct 10, 2025
Length 82 Pages
SKU # AMPS20596073

Description

GCC AI-Powered Banking Fraud Detection Analytics Market Overview

The GCC AI-Powered Banking Fraud Detection Analytics Market is valued at USD 1.2 billion, based on a five-year historical analysis. This growth is primarily driven by the increasing sophistication of cyber threats, the rising volume of digital transactions, and the growing adoption of AI technologies in banking. Financial institutions are investing heavily in advanced analytics to enhance their fraud detection capabilities and protect customer data.

Key players in this market include Saudi Arabia and the UAE, which dominate due to their robust banking infrastructure, high internet penetration rates, and proactive regulatory frameworks. These countries are also home to numerous fintech startups that are leveraging AI to innovate and improve fraud detection solutions, making them leaders in the region.

In 2023, the Central Bank of the UAE implemented a new regulation mandating that all financial institutions adopt AI-driven fraud detection systems. This regulation aims to enhance the security of financial transactions and protect consumers from fraud, thereby fostering a safer banking environment across the region.

GCC AI-Powered Banking Fraud Detection Analytics Market Segmentation

By Type:

The market is segmented into various types, including Transaction Monitoring, Identity Verification, Risk Assessment, Fraud Analytics Software, Managed Services, Consulting Services, and Others. Among these, Transaction Monitoring is the leading sub-segment, driven by the increasing need for real-time fraud detection and prevention in banking transactions. Financial institutions are prioritizing transaction monitoring solutions to mitigate risks associated with fraudulent activities, thus enhancing their operational efficiency and customer trust.

By End-User:

The end-user segmentation includes Retail Banks, Investment Banks, Credit Unions, Insurance Companies, Payment Processors, and Others. Retail Banks are the dominant segment, as they face the highest volume of transactions and are under constant pressure to protect customer assets. The increasing reliance on digital banking services has led retail banks to invest significantly in AI-powered fraud detection solutions to safeguard their operations and enhance customer experience.

GCC AI-Powered Banking Fraud Detection Analytics Market Competitive Landscape

The GCC AI-Powered Banking Fraud Detection Analytics Market is characterized by a dynamic mix of regional and international players. Leading participants such as FICO, SAS Institute Inc., ACI Worldwide, NICE Actimize, Palantir Technologies, IBM Corporation, Oracle Corporation, Experian, ThreatMetrix, Verafin, InAuth, Kount, Zoot Enterprises, Forter, Signifyd contribute to innovation, geographic expansion, and service delivery in this space.

FICO

1956

San Jose, California, USA

SAS Institute Inc.

1976

Cary, North Carolina, USA

ACI Worldwide

1975

Naples, Florida, USA

NICE Actimize

2001

Hoboken, New Jersey, USA

Palantir Technologies

2003

Palo Alto, California, USA

Company

Establishment Year

Headquarters

Group Size (Large, Medium, or Small as per industry convention)

Revenue Growth Rate

Customer Acquisition Cost

Customer Retention Rate

Market Penetration Rate

Pricing Strategy

GCC AI-Powered Banking Fraud Detection Analytics Market Industry Analysis

Growth Drivers

Increasing Cybersecurity Threats:

The GCC region has witnessed a 30% increase in cyberattacks from 2022 to 2023, with financial institutions being prime targets. According to the International Monetary Fund (IMF), the cost of cybercrime in the financial sector is projected to reach $8 trillion globally in the future. This alarming trend drives banks to invest in AI-powered fraud detection systems to safeguard assets and maintain customer trust, thereby propelling market growth.

Adoption of Digital Banking Services:

The digital banking sector in the GCC is expected to grow by 20% annually, with over 75% of consumers preferring online banking services as of 2023. The World Bank reports that digital transactions in the region reached $2 trillion in the future, highlighting the shift towards digital platforms. This surge necessitates advanced fraud detection solutions, further stimulating demand for AI-powered analytics in banking.

Advancements in AI and Machine Learning Technologies:

The GCC is investing heavily in AI technologies, with the market expected to reach $10 billion in the future, according to the Gulf Cooperation Council (GCC) report. Innovations in machine learning algorithms enhance the accuracy of fraud detection systems, allowing banks to process vast amounts of transaction data in real-time. This technological evolution is a significant driver for the adoption of AI-powered banking fraud detection analytics.

Market Challenges

High Implementation Costs:

Implementing AI-powered fraud detection systems can cost banks between $600,000 to $2.5 million, depending on the complexity and scale of the solution. This financial burden can deter smaller institutions from adopting advanced technologies, limiting market growth. The high initial investment, coupled with ongoing maintenance costs, poses a significant challenge for many banks in the GCC region.

Data Privacy Concerns:

With the implementation of stringent data protection laws, such as the General Data Protection Regulation (GDPR), banks face challenges in managing customer data. A survey by the International Association of Privacy Professionals (IAPP) indicated that 65% of financial institutions in the GCC are concerned about compliance costs. These privacy concerns can hinder the adoption of AI technologies, impacting the overall market growth.

GCC AI-Powered Banking Fraud Detection Analytics Market Future Outlook

The future of the GCC AI-powered banking fraud detection analytics market appears promising, driven by technological advancements and increasing regulatory pressures. As banks continue to prioritize cybersecurity, the integration of AI and machine learning will become essential for real-time fraud detection. Additionally, the growing collaboration between financial institutions and technology providers will enhance the development of innovative solutions, ensuring that banks remain competitive in a rapidly evolving digital landscape.

Market Opportunities

Growing Demand for Real-Time Analytics:

The demand for real-time analytics is surging, with the market for such solutions expected to grow by 30% annually. Financial institutions are increasingly seeking tools that provide immediate insights into transactions, enabling swift responses to potential fraud. This trend presents a significant opportunity for AI-powered analytics providers to cater to the evolving needs of banks in the GCC.

Expansion of Fintech Startups:

The GCC region has seen a 45% increase in fintech startups from 2022 to 2023, fostering innovation in financial services. These startups often seek advanced fraud detection solutions to differentiate themselves in a competitive market. This expansion creates opportunities for established technology providers to partner with emerging fintech firms, driving growth in AI-powered banking fraud detection analytics.

Please Note: It will take 5-7 business days to complete the report upon order confirmation.

Table of Contents

82 Pages
1. GCC AI-Powered Banking Fraud Detection Analytics Size, Share & – Market Overview
1.1. Definition and Scope
1.2. Market Taxonomy
1.3. Market Growth Rate
1.4. Market Segmentation Overview
2. GCC AI-Powered Banking Fraud Detection Analytics Size, Share & – Market Size (in USD Bn), 2019–2024
2.1. Historical Market Size
2.2. Year-on-Year Growth Analysis
2.3. Key Market Developments and Milestones
3. GCC AI-Powered Banking Fraud Detection Analytics Size, Share & – Market Analysis
3.1. Growth Drivers
3.1.1. Increasing Cybersecurity Threats
3.1.2. Adoption of Digital Banking Services
3.1.3. Regulatory Compliance Requirements
3.1.4. Advancements in AI and Machine Learning Technologies
3.2. Restraints
3.2.1. High Implementation Costs
3.2.2. Data Privacy Concerns
3.2.3. Lack of Skilled Workforce
3.2.4. Integration with Legacy Systems
3.3. Opportunities
3.3.1. Growing Demand for Real-Time Analytics
3.3.2. Expansion of Fintech Startups
3.3.3. Partnerships with Technology Providers
3.3.4. Increasing Investment in Fraud Prevention Solutions
3.4. Trends
3.4.1. Shift Towards Cloud-Based Solutions
3.4.2. Use of Predictive Analytics
3.4.3. Enhanced Customer Experience Focus
3.4.4. Rise of Biometric Authentication
3.5. Government Regulation
3.5.1. Data Protection Laws
3.5.2. Anti-Money Laundering Regulations
3.5.3. Cybersecurity Frameworks
3.5.4. Financial Conduct Authority Guidelines
3.6. SWOT Analysis
3.7. Stakeholder Ecosystem
3.8. Competition Ecosystem
4. GCC AI-Powered Banking Fraud Detection Analytics Size, Share & – Market Segmentation, 2024
4.1. By Type (in Value %)
4.1.1. Transaction Monitoring
4.1.2. Identity Verification
4.1.3. Risk Assessment
4.1.4. Fraud Analytics Software
4.1.5. Managed Services
4.1.6. Consulting Services
4.1.7. Others
4.2. By End-User (in Value %)
4.2.1. Retail Banks
4.2.2. Investment Banks
4.2.3. Credit Unions
4.2.4. Insurance Companies
4.2.5. Payment Processors
4.2.6. Others
4.3. By Deployment Mode (in Value %)
4.3.1. On-Premises
4.3.2. Cloud-Based
4.3.3. Hybrid
4.4. By Application (in Value %)
4.4.1. Online Transactions
4.4.2. Mobile Banking
4.4.3. ATM Transactions
4.4.4. E-commerce
4.4.5. Others
4.5. By Customer Size (in Value %)
4.5.1. Large Enterprises
4.5.2. Medium Enterprises
4.5.3. Small Enterprises
4.6. By Region (in Value %)
4.6.1. Saudi Arabia
4.6.2. UAE
4.6.3. Qatar
4.6.4. Kuwait
4.6.5. Oman
4.6.6. Bahrain
4.6.7. Others
5. GCC AI-Powered Banking Fraud Detection Analytics Size, Share & – Market Cross Comparison
5.1. Detailed Profiles of Major Companies
5.1.1. FICO
5.1.2. SAS Institute Inc.
5.1.3. ACI Worldwide
5.1.4. NICE Actimize
5.1.5. Palantir Technologies
5.2. Cross Comparison Parameters
5.2.1. Revenue Growth Rate
5.2.2. Customer Acquisition Cost
5.2.3. Customer Retention Rate
5.2.4. Market Penetration Rate
5.2.5. Pricing Strategy
6. GCC AI-Powered Banking Fraud Detection Analytics Size, Share & – Market Regulatory Framework
6.1. Compliance Requirements and Audits
6.2. Certification Processes
7. GCC AI-Powered Banking Fraud Detection Analytics Size, Share & – Market Future Size (in USD Bn), 2025–2030
7.1. Future Market Size Projections
7.2. Key Factors Driving Future Market Growth
8. GCC AI-Powered Banking Fraud Detection Analytics Size, Share & – Market Future Segmentation, 2030
8.1. By Type (in Value %)
8.2. By End-User (in Value %)
8.3. By Deployment Mode (in Value %)
8.4. By Application (in Value %)
8.5. By Customer Size (in Value %)
8.6. By Region (in Value %)
Disclaimer
Contact Us
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.