Report cover image

Global De-Identified Health Data Market Size, Trend & Opportunity Analysis Report, by Product (Roasted, Raw), Bean Species (Arabica, Robusta, Others), and Forecast, 2024–2035

Published Sep 28, 2025
Length 285 Pages
SKU # KAIS20696566

Description

Market Definition and Introduction

The global de-identified health data market was valued at USD 8.09 billion in 2024 and is anticipated to reach USD 21.07 billion by 2035, expanding at a CAGR of 9.09% during the forecast period (2024–2035). De-identified data has emerged as the cornerstone of modern health intelligence strategies as healthcare continues its rapid shift into the digital world. Organisations from all corners of life sciences, insurance, and health technology are now forced to employ anonymised data sets not only to improve patient outcomes but also to enhance pharmaceutical research and predictive modelling efforts without compromising his or her privacy. Hence, regulatory pressure and ethical conscience have forced companies to strike a balance between innovation and responsibility, which indeed bolsters investment in advanced anonymisation techniques and compliant data-sharing frameworks.

Thus, pharmaceutical companies gain tremendous strength from de-identified health records in hastening drug development, streamlining trial recruitment, and validating therapeutic performance. Meanwhile, insurance companies are benefiting from anonymised records for improving actuarial models, risk assessment, and efficient reimbursement designs. Sophisticated AI-enabled machine learning models constructed by technology providers and AI-driven platforms integrate these large volumes of data to provide predictive insights into population health trends, effectiveness of treatments, and healthcare access gaps.

On the supply side, providers are facing increasing pressure to build data ecosystems which are keeping pace with growing sophistication in terms of security, interoperability and scalability. Such systems will create an integrated architecture where EHRs, claims data, genomic datasets and patient-generated data from wearables can be linked into a unified architecture. Such a transformation will not be technological alone; it will also redefine collaborative strategies, research pipelines and value chains throughout the healthcare sector.

Recent Developments in the Industry

IQVIA bolsters data ecosystem with augmented provider integration.

In March of 2024, IQVIA enlarged the scope of its real-world evidence platform with the enrollment of new provider networks from North America and Europe, thus paving the path toward greater clinical trial efficiencies and accelerating evidence generation.

Veradigm unveils an anonymised EHR data platform for biopharma.

In January of 2025, Veradigm introduced a tailored de-identified EHR dataset solution that helps drug developers and payors to reduce clinical validation time and increase post-market drug surveillance capability.

Komodo Health bags $250 million to boost predictive analytics.

In September of 2024, Komodo Health secured $250 million in a Series E round to further its proprietary healthcare map platform, with a significant focus on AI-driven insights into anonymised patient journeys for biopharma stakeholders.

Datavant joins with U.S. agencies for nationwide health data linkage.

In February of 2025, Datavant entered into a federal partnership to securely link disparate health data assets among governmental bodies and to strongly support national-scale public health research efforts.

Flatiron Health integrates genomic insights into an oncology platform.

In June of 2024, Flatiron Health integrated large genomic datasets into its de-identified cancer research infrastructure, thus strengthening precision medicine and clinical research programs in oncology.

Market Dynamics

The worldwide demand for real-world data has been gaining momentum with the large-scale adoption of de-identified datasets.

Real-world evidence continues to seek a higher demand with shifting focus from therapy to prevention in health care. De-identified datasets play a critical role in epidemiology studies, the optimisation of clinical trials, and precision medicine. The high prevalence of chronic conditions, along with growing investments in AI-based drug discovery, in turn, are increasing the demand for structured anonymised health records across various geographies.

Global regulatory frameworks reinforce secure data-sharing and anonymisation practices.

Anonymisation technology innovation is being prompted by compliance with privacy mandates such as HIPAA, GDPR, and country-specific health data acts. Vendors are now heavily investing in privacy-preserving techniques such as tokenisation, federated learning, and advanced encryption, ensuring sensitive information is used securely. These frameworks mitigate compliance risks and simultaneously promote cross-border data collaborations.

Expanding pharmaceutical innovation accelerates the need for precision-ready datasets.

Drug developers increasingly rely on de-identified health data to simulate outcomes, validate biomarkers, and identify patient cohorts. The demand for clean, structured, high-volume datasets supporting precision-ready drug design, clinical trials, and regulatory approvals is also increasing in this environment of personalised medicine and biologics.

Instability in data quality and hurdles to interoperability are hampering widespread adoption.

Though growing strongly, the industry is still finding it hard to harmonise heterogeneous datasets across healthcare systems. Data silos, legacy infrastructure, and inconsistently coded standards are all forces working against the usability of de-identified datasets. Then, there is the vexation of linking multi-modal data across claims, genomics, and behavioural health, which remains the single greatest obstacle to scaling adoption.

This new realm is offered by emerging AI-powered analytics platforms for value addition.

The AI-convergence of de-identified health data is becoming an enabler to predictive healthcare, disease modelling, and policy simulation. Vendors are experimenting with hybrid data ecosystems that combine structured and unstructured datasets for commercial and clinical applications. The growing interest in healthcare digital twins and virtual trials serves as a testament to a truly transformative decade ahead.

Attractive Opportunities in the Market

AI-Driven Insights – Rising demand for predictive analytics platforms built on anonymised datasets
Pharma Partnerships – Expanding collaborations for data-driven drug discovery and clinical development
Privacy Tech Growth – Emergence of privacy-preserving technologies like federated learning and tokenisation
Precision Medicine Shift – Growing adoption of de-identified genomics and EHR data for personalised therapies
Regulatory Compliance Edge – Companies investing in HIPAA and GDPR compliance gain stronger market access
Wearable Data Integration – Expanding the utility of patient-generated health data from IoT and wearables
Population Health Demand – Governments using de-identified datasets to design public health strategies
Cloud Ecosystem Growth – Cloud-native solutions supporting real-time, scalable health data integration
Cross-Border Collaboration – Global interoperability initiatives encouraging secure international data exchange
Venture Capital Influx – Growing investor interest in health data platforms accelerates innovation pipelines

Report Segmentation

By Product: Roasted, Raw

By Bean Species: Arabica, Robusta, Others

By Region

North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)

Key Market Players

IQVIA, Veradigm, TriNetX, HealthVerity, Cerner Corporation (Oracle Health), Komodo Health, Datavant, Evidation Health, Tempus, and Flatiron Health.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2024-2035
Report Pages: 293

Dominating Segments

Raw datasets still rule the roost for the adoption of de-identified health data across research and analytics applications.

Such datasets continue to provide insight into claims, EHR, and genomic records, being the backbone of very modern healthcare analytics. They have provided the scope and depth for longitudinal studies, AI-powered predictions, and regulatory submissions. Hence, researchers prefer raw datasets for their flexible, scalable nature more commonly utilised in drug safety or comparative effectiveness research. With intensifying regulatory requirements, raw datasets provide flexibility for those innovations needing a compliance box to check.

Roasted datasets gain prominence for structured insights for applications to suit the cases.

Roasted (or processed and structured) datasets are being increasingly considered prized assets by organisations that demand curated, ready-to-use insight. The pre-analysed datasets proposed with pre-mapped attributes relevant to trial recruitment, patient segmentation, and outcome studies have reduced turnaround time for pharmaceutical companies and payers. As the complexity of healthcare data increases, roasted datasets are gaining traction in companies where speed, standardisation, and lower analytical overhead are vital.

Arabica species datasets lead in adoption with complete clinical applicability.

The Arabica-equivalent datasets, rich in worldly wisdom and nuances, have nearly monopolised the marketplace because of their applicability in clinical trials, public health studies, and predictive modelling. Being highly granular enables them to support cross-sectional and longitudinal analysis precision in research and policymaking. These datasets are valuable across clinical endeavors-such as oncology to cardiovascular reinforce their leadership position.

Datasets equivalent to Robusta are increasingly gaining momentum, placing high importance on analytics for population-based interventions.

The datasets comparable to Robusta, though less granular, are gathering momentum because they are scalable and cheap. Among others, they are particularly useful for population health studies and payer risk stratification, thus offering cheap integration into analytics platforms. They can be applied in healthcare economics modelling, reimbursement models, and epidemiology.

Datasets classified under Other serve niche, specialised applications across the emerging domains

Datasets that do fall into that 'others' category are carving niche opportunities within behavioural health, social determinants of health, and rare disease research. These niche datasets partner with mainstream data sources to stimulate innovations in less-served therapeutic and policy arenas. The growth of demand for a more holistic view of healthcare would ensure these 'others' stretch into even newer domains.

Key Takeaways

Data Ecosystem Growth – Rising demand for integrated datasets spanning EHRs, claims, and genomics
Pharma R&D Focus – Biopharma increasingly leveraging anonymised datasets for drug discovery and trials
Raw Data Dominance – Large-scale raw datasets continue to power population health and real-world studies
Structured Insights Rise – Processed datasets deliver quick, standardised, and actionable decision support
Arabica Leadership – Nuanced, granular datasets dominate cross-therapeutic adoption in research pipelines
Robusta Expansion – High-volume datasets gain popularity for affordability and broad-scale applications
Regulatory Momentum – HIPAA and GDPR compliance drive innovation in privacy-preserving technologies
AI-Powered Growth – Machine learning engines thrive on large anonymised datasets for predictive analytics
Cross-Border Opportunities – Global collaborations fuel interoperability and secure data-sharing networks
Investor Confidence – Strong venture capital inflows accelerate market innovation and platform scaling

Regional Insights

North America has taken the lead in the global health data market with the growth of the infrastructure of healthcare providers, pharmaceutical companies, and tech companies.

Privacy solutions have been developed in compliance with HIPAA in the United States, thanks to a high clinical trial density that has resulted in continuously rising demand for de-identified datasets. Additionally, complex collaborations between payers, providers, and data intermediaries are forming the markets for highly advanced health intelligence applications.

Europe is the first to ensure that the secure use of health data is necessary.

Europe's moves are guided by the strongest privacy-protecting innovation philosophy that banks on GDPR and cross-border data governance initiatives. Investments that include digital health infrastructures, interoperability frameworks, and concerted research networks characterise pioneer countries in European health innovation, particularly Germany, France, and the United Kingdom. These actions are not only securing protection of patients but also ensuring relevance about the adult, neuronal implementation of health data in the clinical, academic, and policy environments.

Asia-Pacific is moving with the upward speed in the evolving health-transformed life.

Thriving, the Asia-Pacific is racing forward in the digital transformation of health on the backdrop of the fast-growing healthcare siliconization of the government and pharmaceutical manufacturing. China, India, and Japan are making good psychological advantage out of large-scale datasets. Which, on their end, had enabled them to improve their health care systems and facilitate medical research. Precision medicine endeavours and interlocking smart wearables stimulate massive development of de-identified datasets in this region.

LAMEA joins the fast train of development, powered by the new transformation of healthcare, the deployment of new government policies

Indeed, Latin America, the Middle East, and Africa are seeing increased healthcare system digitisation with international collaborations and policy reforms. Brazil and the UAE have recently embarked on programs to update their health data infrastructure. Africa is also gradually taking on digital health. While the area certainly presents some substantial untapped opportunities with the use and deployment of de-identified health data solutions, the main hurdle remains in infrastructure and regulatory operation maturity.

Core Strategic Questions Answered in This Report

What is the expected growth trajectory of the de-identified health data market from 2024 to 2035?

The global de-identified health data market is projected to grow from USD 8.09 billion in 2024 to USD 21.07 billion by 2035, registering a CAGR of 9.09%. This growth is fueled by demand from pharmaceutical innovation, insurance analytics, and AI-driven healthcare platforms.

Which key factors are fuelling the growth of the de-identified health data market?

Several key factors are propelling market growth:

Rising need for real-world evidence in drug discovery and clinical trials
Increasing integration of wearable and genomics data into healthcare platforms
Regulatory frameworks encouraging anonymised health data utilisation
Expanding AI and predictive analytics applications in population health
Rapid digital health adoption in emerging economies

What are the primary challenges hindering the growth of the de-identified health data market?

Major challenges include:

Interoperability issues across disparate health data systems
Variability in data quality, coding standards, and usability
Complexity of linking structured and unstructured datasets
High compliance costs in meeting global privacy regulations
Infrastructure limitations in developing economies

Which regions currently lead the de-identified health data market in terms of market share?

North America currently leads the de-identified health data market due to its strong pharmaceutical base, large provider networks, and strict regulatory frameworks. Europe follows with its emphasis on GDPR-driven innovation, while Asia-Pacific represents the fastest-growing region.

What emerging opportunities are anticipated in the de-identified health data market?

The market is ripe with opportunities, including:

AI-based predictive platforms powered by anonymised datasets
Expansion of global cross-border interoperability standards
Increasing adoption of genomic and behavioural health datasets
Investments in privacy-preserving technologies like federated learning
Growth in population health analytics across emerging markets

Key Benefits for Stakeholders

The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter’s Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.

Table of Contents

285 Pages
Chapter 1. Market Snapshot
1.1. Market Definition & Report Overview
1.2. Market Segmentation
1.3. Key Takeaways
1.3.1. Top Investment Pockets
1.3.2. Top Winning Strategies
1.3.3. Market Indicators Analysis
1.3.4. Top Impacting Factors
1.4. Application Ecosystem Analysis
1.4.1. 360’ Analysis
Chapter 2. Executive Summary
2.1. CEO/CXO Standpoint
2.2. Strategic Insights
2.3. ESG Analysis
2.4. Market Attractiveness Analysis (top leader’s point of view on the market)
2.5. Key Findings
Chapter 3. Research Methodology
3.1. Research Objective
3.2. Supply Side Analysis
3.2.1. Primary Research
3.2.2. Secondary Research
3.3. Demand Side Analysis
3.3.1. Primary Research
3.3.2. Secondary Research
3.4. Forecasting Models
3.4.1. Assumptions
3.4.2. Forecasts Parameters
3.5. Competitive breakdown
3.5.1. Market Positioning
3.5.2. Competitive Strength
3.6. Scope of the Study
3.6.1. Research Assumption
3.6.2. Inclusion & Exclusion
3.6.3. Limitations
Chapter 4. Industry Landscape
4.1. Market Dynamics
4.1.1. Drivers
4.1.2. Restraints
4.1.3. Opportunities
4.2. Porter’s 5 Forces Model
4.2.1. Bargaining Power of Buyer
4.2.2. Bargaining Power of Supplier
4.2.3. Threat of New Entrants
4.2.4. Threat of Substitutes
4.2.5. Competitive Rivalry
4.3. Value Chain Analysis
4.4. PESTEL Analysis
4.5. Pricing Analysis and Trends
4.6. Key growth factors and trends analysis
4.7. Market Share Analysis (2024)
4.8. Top Winning Strategies (2024)
4.9. Trade Data Analysis (Import Export)
4.10. Regulatory Guidelines
4.11. Historical Data Analysis
4.12. Analyst Recommendation & Conclusion
Chapter 5. Global De-Identified Health Data Market Size & Forecasts by End-use 2024-2035
5.1. Market Overview
5.1.1. Market Size and Forecast By End-use 2024-2035
5.2. Pharmaceutical Companies
5.2.1. Market definition, current market trends, growth factors, and opportunities
5.2.2. Market size analysis, by region, 2024-2035
5.2.3. Market share analysis, by country, 2024-2035
5.3. Biotechnology Firms
5.3.1. Market definition, current market trends, growth factors, and opportunities
5.3.2. Market size analysis, by region, 2024-2035
5.3.3. Market share analysis, by country, 2024-2035
5.4. Medical Device Manufacturers
5.4.1. Market definition, current market trends, growth factors, and opportunities
5.4.2. Market size analysis, by region, 2024-2035
5.4.3. Market share analysis, by country, 2024-2035
5.5. Healthcare Providers
5.5.1. Market definition, current market trends, growth factors, and opportunities
5.5.2. Market size analysis, by region, 2024-2035
5.5.3. Market share analysis, by country, 2024-2035
Chapter 6. Global De-Identified Health Data Market Size & Forecasts by Region 2024–2035
6.1. Regional Overview 2024-2035
6.2. Top Leading and Emerging Nations
6.3. North America De-Identified Health Data Market
6.3.1. U.S. De-Identified Health Data Market
6.3.1.1. End-use breakdown size & forecasts, 2024-2035
6.3.2. Canada De-Identified Health Data Market
6.3.2.1. End-use breakdown size & forecasts, 2024-2035
6.3.3. Mexico De-Identified Health Data Market
6.3.3.1. End-use breakdown size & forecasts, 2024-2035
6.4. Europe De-Identified Health Data Market
6.4.1. UK De-Identified Health Data Market
6.4.1.1. End-use breakdown size & forecasts, 2024-2035
6.4.2. Germany De-Identified Health Data Market
6.4.2.1. End-use breakdown size & forecasts, 2024-2035
6.4.3. France De-Identified Health Data Market
6.4.3.1. End-use breakdown size & forecasts, 2024-2035
6.4.4. Spain De-Identified Health Data Market
6.4.4.1. End-use breakdown size & forecasts, 2024-2035
6.4.5. Italy De-Identified Health Data Market
6.4.5.1. End-use breakdown size & forecasts, 2024-2035
6.4.6. Rest of Europe De-Identified Health Data Market
6.4.6.1. End-use breakdown size & forecasts, 2024-2035
6.5. Asia Pacific De-Identified Health Data Market
6.5.1. China De-Identified Health Data Market
6.5.1.1. End-use breakdown size & forecasts, 2024-2035
6.5.2. India De-Identified Health Data Market
6.5.2.1. End-use breakdown size & forecasts, 2024-2035
6.5.3. Japan De-Identified Health Data Market
6.5.3.1. End-use breakdown size & forecasts, 2024-2035
6.5.4. Australia De-Identified Health Data Market
6.5.4.1. End-use breakdown size & forecasts, 2024-2035
6.5.5. South Korea De-Identified Health Data Market
6.5.5.1. End-use breakdown size & forecasts, 2024-2035
6.5.6. Rest of APAC De-Identified Health Data Market
6.5.6.1. End-use breakdown size & forecasts, 2024-2035
6.6. LAMEA De-Identified Health Data Market
6.6.1. Brazil De-Identified Health Data Market
6.6.1.1. End-use breakdown size & forecasts, 2024-2035
6.6.2. Argentina De-Identified Health Data Market
6.6.2.1. End-use breakdown size & forecasts, 2024-2035
6.6.3. UAE De-Identified Health Data Market
6.6.3.1. End-use breakdown size & forecasts, 2024-2035
6.6.4. Saudi Arabia (KSA De-Identified Health Data Market
6.6.4.1. End-use breakdown size & forecasts, 2024-2035
6.6.5. Africa De-Identified Health Data Market
6.6.5.1. End-use breakdown size & forecasts, 2024-2035
6.6.6. Rest of LAMEA De-Identified Health Data Market
6.6.6.1. End-use breakdown size & forecasts, 2024-2035
Chapter 7. Company Profiles
7.1. Top Market Strategies
7.2. Company Profiles
7.2.1. IQVIA
7.2.1.1. Company Overview
7.2.1.2. Key Executives
7.2.1.3. Company Snapshot
7.2.1.4. Financial Performance (Subject to Data Availability)
7.2.1.5. Product/Services Port
7.2.1.6. Recent Development
7.2.1.7. Market Strategies
7.2.1.8. SWOT Analysis
7.2.2. Veradigm
7.2.3. TriNetX
7.2.4. HealthVerity
7.2.5. Cerner Corporation (Oracle Health)
7.2.6. Komodo Health
7.2.7. Datavant
7.2.8. Evidation Health
7.2.9. Tempus
7.2.10. Flatiron Health
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.