Report cover image

Global Artificial Intelligence in Supply Chain Market Size, Trend & Opportunity Analysis Report, by Offering (Hardware, Software, Services), Technology (Machine Learning, Computer Vision, and more), and Forecast, 2025–2035

Published Aug 09, 2025
Length 285 Pages
SKU # KAIS20696903

Description

Market Definition and Introduction

The global artificial intelligence in supply chain market was valued at USD 7.65 billion in 2024 and is forecast to soar to USD 214.52 billion by 2035, accelerating at a striking CAGR of 35.40% during the forecast period (2025–2035). Now and more than ever, nearly all the global supply chains experience full-blown crises. Among these are volatility, inflation, and demand variability, not to mention uncoordinated operations, which have made many an enterprise seriously consider AI as a strategic lifeline. This artificial intelligence now stands to revolutionize supply chain ecosystems through predictive demand forecasting, autonomous planning, risk mitigation, optimization of warehouses, and real-time logistics monitoring. AI's convergence with super-advanced analytics, IoT, and cloud computing has made the supply chain a flexible, responsive, and intelligent engine for competitive advantage.

The well-established AI tools for supply chain management have now made prospective decision-making with real-time data insights and optimal inventory control very fast, accurate, and practical for leading enterprises around the globe. Such AI abilities were once regarded as value-added when made available; however, they have increasingly been seen as pivotal to strategies concerning supply chain resilience. Based on real-time data from adaptive routing systems or digital twins of supply networks, the design of future operations will shift from a reactive to a proactive model. This is bringing to life a new set of chains of value, especially in sectors where speed is on the order of the day, such as automotive, retail, manufacturing, and pharmaceuticals.

At the same time, the rapidly accelerating adoption of Industry 4.0 technologies is now catalyzing intelligent automation across sourcing, procurement, production, and distribution processes. AI applications, including computer vision for quality inspection, machine learning for procurement analytics, and natural language processing for supplier engagement, are gaining wide currency as accelerator methods to remove bottlenecks and bring end-to-end visibility. Also, as the costs of integrating AI keep going down, the entire global supply chain landscape is being rewritten for speed, precision, and scalability.

Recent Developments in the Industry

IBM launched Watsonx Supply Chain Intelligence in August 2024 at an event held by the company.

IBM's AI integrated machine learning, LLMs, and automation in future supply chains, and made predictive insights in logistics and supplier networks possible.

AWS collaborated with Deloitte in July 2024

To develop industry-specific AI models to help with forecasting and logistics optimization in supply chain systems on AWS. Warehousing also introduced models to facilitate intelligent, seamless operations.

In June of the year 2024, at NVIDIA's event, the company unveiled its

AI Workbench enables supply chain engineers to build and deploy generative AI models for demand sensing, inventory tracking, and automated procurement analytics.

Microsoft, in March 2024, unveiled Copilot for Dynamics 365 Supply Chain Management, which uses generative AI.

Microsoft, in March 2024, unveiled Copilot for Dynamics 365 Supply Chain Management, which uses generative AI to help support planners in anomaly detection, mitigation recommendations, and real-time collaboration.

In January 2023, Google Cloud expanded its offer of AI-powered supply chain digital solutions.

In January 2023, Google Cloud expanded its offer AI-powered supply chain digital twin that allows the organization to model simulation scenarios, risk assessment, and reconfigure sourcing strategies with predictive simulations.

Market Dynamics

Blitzkrieg Investment in AI Is Restructuring Global Supply Chain Strategies

The sharp increase in investments from enterprises and governments into AI solutions would rewrite the future of supply chains. Every company in the world is investing money in AI-driven platforms that eliminate waste, decrease operational costs, and maximize the flexibility of the company against uncertainty. Companies are now utilizing AI technology to divert enterprises away from linear ones and design predictive, smart, and integrated circular networks.

Skyrocketing Demand for Predictive Logistics and Inventory Optimization Proactiveness

The higher customer demand for faster deliveries and more personalized products has triggered supply chain leaders to make investments in predictive analytics to sense shifts in demand in real-time. Adoption of AI-enabled tools will be pursued for dynamically adjusting inventory levels, optimizing transportation routes, and detecting bottlenecks in real time before they develop into significant and major disruptions. The precision logistics initiative is propelling the use of AI-powered SCM solutions.

Talent Shortage of AI Professionals and Integrated Complexities: Available Challenges

The gene-altering power found within AI comes with grave challenges in its implementation into supply chains, mainly due to the shortage of domain-specific AI talent, restrictions imposed by old systems, and isolated data architecture. Most of the SMEs have great trouble aligning their existing ERP and SCM applications with those for deploying AI. Thus, explainability and regulation remain a concern among governing bodies and industry leaders because AI decision-making is not guaranteed to be transparent and compliant.

Ever-Broadening Demand for Visibility and Transparency in Global Supply Networks

Geopolitical crises, environmental perils, and ethical sourcing are pushing organizations to adopt traceability across their tiers of supply chains. AI, blockchain, and IoT are being used for fine-grain visibility into the compliance of suppliers, carbon emissions, or delivery timelines of suppliers. These insights allow enterprises to de-risk their supply chains and enhance customer trust.

AI-Powered Automation Driving Cost Efficiency in Adding Labor Productivity Gains

With increasing labor costs and decreasing availability of skilled labor, organizations are increasingly investing in AI-driven automation for their repetitive and data-intensive supply chain functions. From AI-powered robotic process automation (RPA) in procurement to autonomous drones in warehousing, the convergence of AI and automation is unlocking new productivity frontiers and reshaping workforces across the supply chain placed above.

Attractive Opportunities in the Market

Smart Demand Forecasting – AI models leveraging historical and external data to enhance forecast precision.
Warehouse Robotics – AI-enabled autonomous vehicles and robots accelerating pick-pack-ship cycles.
Generative AI Applications – LLMs improving supplier onboarding, contract analysis, and risk assessments.
Edge AI & IoT – Real-time AI processing at edge devices, boosting cold chain and inventory monitoring.
Cloud-native Platforms – Scalable AI solutions integrated into supply chain software-as-a-service ecosystems.
Digital Twin Deployment – Virtual supply networks enabling scenario planning and predictive risk modelling.
Last-mile Optimization – AI-driven route planning and dynamic delivery management for e-commerce fulfilment.
Sustainable Supply Chain Intelligence – AI assisting ESG tracking and carbon reduction across the network.

Report Segmentation

By Offering: Hardware, Software, Services

By Technology: Machine Learning, Computer Vision, Natural Language Processing, Predictive Analytics, Robotics & Automation, Others

By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)

Key Market Players

IBM Corporation, Amazon Web Services (AWS), Microsoft Corporation, Oracle Corporation, SAP SE, Blue Yonder, NVIDIA Corporation, C3.ai, Google Cloud, and Infor.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025-2035
Report Pages: 293

Dominating Segments

Amidst Increasing Digital Transformation Demand, Software Segment Leads in Global AI in Supply Chain Market

Due to a rise in the adoption of AI solutions in demand planning, inventory optimization, and supplier analytics, the software segment is leading the pack. Firms are increasingly adopting SaaS AI tools that are plug-and-play options capable of delivering speedy ROI. In its wake, the services segment is growing since organizations have begun relying on consulting and implementation support to operationalize AI at scale.

Machine Learning Technology Leads on Account of Its Predictive Excel and Decision-making Ability

Machine learning has the lion's share among technologies since supply chain functions increasingly depend on pattern recognition and predictive modeling. ML algorithms optimize warehouse layouts, predict demand volatility, and automate procurement cycles. Simultaneously, computer vision has also been gaining momentum, especially in manufacturing and logistics, where visual inspection, sorting, and tracking matter so much.

Hardware Segment Continues to Grow Strong with AI Infrastructure Being Central to Smart Warehousing

The hardware segment is not the key player but is growing steadily, including AI chips, sensors, and robotics, as the upgrade of physical infrastructure has become key for the deployment of AI. AI-ready drones, AGVs, and sensors are facilitating intelligent material handling and warehouse automation, further increasing demand for solid hardware installations via edge computing and IoT.

Key Takeaways

Software Leads the Charge – SaaS-based AI platforms dominate supply chain digitalization.
Machine Learning Prevails – Predictive models drive demand sensing and logistics optimization.
Smart Warehousing Grows – AI-powered robotics is transforming inventory and fulfillment operations.
Generative AI Adoption – Language models streamline supplier engagement and data parsing.
Cloud and Edge Synergy – Real-time insights from interconnected AI devices at the supply edge.
Sustainable Supply Chains – AI tracks carbon footprints and enables ESG compliance.
Visibility and Traceability – Enhanced monitoring boosts operational transparency and trust.
Digital Twin Expansion – Scenario planning and risk assessment drive digital twin use cases.
Asia-Pacific Surge – Industrialization and tech adoption fuel AI supply chain growth in APAC.
Cybersecurity Emphasis – AI security protocols protect critical supply chain data infrastructures.

Regional Insights

Strengthened Technological Backbone: North America Steals the Lead in AI Supply Chain Implementation by Its Early Wariness

The advent of major technology providers, high AI readiness, and a solid manufacturing base has propelled the North American region to the lead in the global AI in supply chain market. The major U.S. corporations are steadily investing in AI capabilities for complex supply networks to cushion against e-commerce booms and geopolitical risk factors. The region's push toward autonomous logistics and smart warehousing on an unprecedented scale speaks to technological supremacy.

Sustainable Goals and Regulatory Standards Steadily Driving AI Growth Across Europe

Europe is witnessing rapid acceleration toward the integration of AI in supply chains due to stringent ESG regulations, transparent sourcing demands, and sustainable logistics. Germany, France, and the Netherlands are becoming spearheads by investing in green AI initiatives and smart manufacturing capabilities concerning circular economy models, while EU-wide digital transformation programs further accelerate the AI rollout.

Asia Pacific Emerges as the Fastest-Growing Region Amid Industrial Expansion and Tech Investments

The Asia Pacific shall witness the wildest growth during the forecast period, fostered by the twin wings of industrialization and government initiatives in AI, with a tech-savvy workforce fast-emerging. Fast-tracking AI applications in manufacturing and logistics hubs-China, Japan, South Korea, and India-are leading the charge. The concentration of AI in the supply chain is further propelled by dominance in electronics and e-commerce in the region.

Gradual Integration of AI in Supply Chain Modernization Efforts in LA and ME & and Africa

Exploring AI for the modernization of fragmented and inefficient supply chains is, albeit in a nascent state, increasing in Latin America and MEA. Investments in smart ports, AI-enabled logistics networks, cross-border trade management tools, and public-private initiatives are paving the way for transitioning these regions into intelligent supply chains.

Core Strategic Questions Answered in This Report

Q. What is the expected growth trajectory of the artificial intelligence in supply chain market from 2024 to 2035?

The global artificial intelligence in supply chain market is projected to surge from USD 7.65 billion in 2024 to USD 214.52 billion by 2035, growing at an exceptional CAGR of 35.40%. This exponential growth is fuelled by rising demand for predictive analytics, automation, and real-time visibility across global logistics networks.

Q. Which key factors are fuelling the growth of the artificial intelligence in supply chain market?

Several factors are driving the market, including:

Increasing complexity in global supply chains and demand for real-time data insights.
Widespread adoption of cloud platforms integrated with AI and machine learning.
Emphasis on cost efficiency, inventory optimization, and sustainability.
Rising automation in warehouses and logistics functions.
Advancements in edge computing, computer vision, and generative AI.
Government-backed AI modernization programs across developing economies.

Q. What are the primary challenges hindering the growth of artificial intelligence in the supply chain market?

Major challenges include:

Lack of skilled AI professionals and high implementation costs.
Integration complexity with legacy ERP and SCM systems.
Data quality issues and fragmentation across supply chain layers.
Cybersecurity and compliance concerns in AI decision-making.
Limited awareness among SMEs regarding AI’s transformative potential.

Q. Which regions currently lead the artificial intelligence in the supply chain market in terms of market share?

North America leads the global market, driven by early adoption, mature digital infrastructure, and a high concentration of tech companies. Europe follows, leveraging its regulatory frameworks and sustainability focus, while Asia-Pacific is emerging as the fastest-growing region with massive industrial AI deployments.

Q. What emerging opportunities are anticipated in the artificial intelligence in supply chain market?

Emerging opportunities include:

Generative AI for supplier communication and contract intelligence.
Autonomous last-mile delivery using AI-driven drones and robotics.
Expansion of AI-powered ESG monitoring for ethical sourcing.
Integration of AI with digital twins for proactive risk modeling.
AI-driven predictive maintenance and real-time monitoring of supply chain assets.

Key Benefits for Stakeholders

The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter's Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.

Table of Contents

285 Pages
Chapter 1. Market Snapshot
1.1. Market Definition & Report Overview
1.2. Market Segmentation
1.3. Key Takeaways
1.3.1. Top Investment Pockets
1.3.2. Top Winning Strategies
1.3.3. Market Indicators Analysis
1.3.4. Top Impacting Factors
1.4. Technology Ecosystem Analysis
1.4.1. 360’ Analysis
Chapter 2. Executive Summary
2.1. CEO/CXO Standpoint
2.2. Strategic Insights
2.3. ESG Analysis
2.4 Market Attractiveness Analysis (top leader’s point of view on market)
2.5.key Findings
Chapter 3. Research Methodology
3.1 Research Objective
3.2 Supply Side Analysis
3.1.1. Primary Research
3.1.2. Secondary Research
3.3 Demand Side Analysis
3.1.3. Primary Research
3.1.4. Secondary Research
3.2. Forecasting Models
3.2.1. Assumptions
3.2.2. Forecasts Parameters ()
3.3. Competitive breakdown
3.3.1. Market Positioning
3.3.2. Competitive Strength
3.4. Scope of the Study
3.4.1. Research Assumption
3.4.2. Inclusion & Exclusion
3.4.3. Limitations
Chapter 4. Chapter 4. Technology Landscape
4.1. Market Dynamics
4.1.1. Drivers
4.1.2. Restraints
4.1.3. Opportunities
4.2. Porter’s 5 Forces Model
4.2.1. Bargaining Power of Buyer
4.2.2. Bargaining Power of Supplier
4.2.3. Threat of New Entrants
4.2.4. Threat of Substitutes
4.2.5. Competitive Rivalry
4.3. Value Chain Analysis
4.4. PESTEL Analysis
4.5. Pricing Analysis and Trends
4.6. Key growth factors and trends analysis
4.7. Market Share Analysis (2025)
4.8. Top Winning Strategies (2025)
4.9. Trade Data Analysis (Import Export)
4.10. Regulatory Guidelines
4.11. Historical Data Analysis
4.12. Analyst Recommendation & Conclusion
Chapter 5. Global Artificial Intelligence in Supply Chain Market InSize & Forecasts by Offering 2025-2035
5.1. Market Overview
5.1.1. Market Size and Forecast By Offering 2025-2035
5.2. Hardware
5.2.1. Market definition, current market trends, growth factors, and opportunities
5.2.2. Market size analysis, by region, 2025-2035
5.2.3. Market share analysis, by country, 2025-2035
5.3. Software
5.3.1. Market definition, current market trends, growth factors, and opportunities
5.3.2. Market size analysis, by region, 2025-2035
5.3.3. Market share analysis, by country, 2025-2035
5.4. Services
5.4.1. Market definition, current market trends, growth factors, and opportunities
5.4.2. Market size analysis, by region, 2025-2035
5.4.3. Market share analysis, by country, 2025-2035
Chapter 6. Global Artificial Intelligence in Supply Chain Market Size & Forecasts by Technology 2025–2035
5.1. Market Overview
6.1.1. Market Size and Forecast By Offering 2025-2035
6.2. Machine Learning
6.2.1. Market definition, current market trends, growth factors, and opportunities
6.2.2. Market size analysis, by region, 2025-2035
6.2.3. Market share analysis, by country, 2025-2035
6.3. Computer Vision
6.3.1. Market definition, current market trends, growth factors, and opportunities
6.3.2. Market size analysis, by region, 2025-2035
6.3.3. Market share analysis, by country, 2025-2035
6.4. more
6.4.1. Market definition, current market trends, growth factors, and opportunities
6.4.2. Market size analysis, by region, 2025-2035
6.4.3. Market share analysis, by country, 2025-2035
Chapter 7. Global Artificial Intelligence in Supply Chain Market Size & Forecasts by Region 2025–2035
7.1. Regional Overview 2025-2035
7.2. Top Leading and Emerging Nations
7.3. North America Artificial Intelligence in Supply Chain Market
7.3.1. U.S. Artificial Intelligence in Supply Chain Market
7.3.1.1. Offering breakdown size & forecasts, 2025-2035
7.3.1.2. Technology breakdown size & forecasts, 2025-2035
7.3.2. Canada Artificial Intelligence in Supply Chain Market
7.3.2.1. Offering breakdown size & forecasts, 2025-2035
7.3.2.2. Technology breakdown size & forecasts, 2025-2035
7.3.3. Mexico Artificial Intelligence in Supply Chain Market
7.3.3.1. Offering breakdown size & forecasts, 2025-2035
7.3.3.2. Technology breakdown size & forecasts, 2025-2035
7.4. Europe Artificial Intelligence in Supply Chain Market
7.4.1. UK Artificial Intelligence in Supply Chain Market
7.4.1.1. Offering breakdown size & forecasts, 2025-2035
7.4.1.2. Technology breakdown size & forecasts, 2025-2035
7.4.2. Germany Artificial Intelligence in Supply Chain Market
7.4.2.1. Offering breakdown size & forecasts, 2025-2035
7.4.2.2. Technology breakdown size & forecasts, 2025-2035
7.4.3. France Artificial Intelligence in Supply Chain Market
7.4.3.1. Offering breakdown size & forecasts, 2025-2035
7.4.3.2. Technology breakdown size & forecasts, 2025-2035
7.4.4. Spain Artificial Intelligence in Supply Chain Market
7.4.4.1. Offering breakdown size & forecasts, 2025-2035
7.4.4.2. Technology breakdown size & forecasts, 2025-2035
7.4.5. Italy Artificial Intelligence in Supply Chain Market
7.4.5.1. Offering breakdown size & forecasts, 2025-2035
7.4.5.2. Technology breakdown size & forecasts, 2025-2035
7.4.6. Rest of Europe Artificial Intelligence in Supply Chain Market
7.4.6.1. Offering breakdown size & forecasts, 2025-2035
7.4.6.2. Technology breakdown size & forecasts, 2025-2035
7.5. Asia Pacific Artificial Intelligence in Supply Chain Market
7.5.1. China Artificial Intelligence in Supply Chain Market
7.5.1.1. Offering breakdown size & forecasts, 2025-2035
7.5.1.2. Technology breakdown size & forecasts, 2025-2035
7.5.2. India Artificial Intelligence in Supply Chain Market
7.5.2.1. Offering breakdown size & forecasts, 2025-2035
7.5.2.2. Technology breakdown size & forecasts, 2025-2035
7.5.3. Japan Artificial Intelligence in Supply Chain Market
7.5.3.1. Offering breakdown size & forecasts, 2025-2035
7.5.3.2. Technology breakdown size & forecasts, 2025-2035
7.5.4. Australia Artificial Intelligence in Supply Chain Market
7.5.4.1. Offering breakdown size & forecasts, 2025-2035
7.5.4.2. Technology breakdown size & forecasts, 2025-2035
7.5.5. South Korea Artificial Intelligence in Supply Chain Market
7.5.5.1. Offering breakdown size & forecasts, 2025-2035
7.5.5.2. Technology breakdown size & forecasts, 2025-2035
7.5.6. Rest of APAC Artificial Intelligence in Supply Chain Market
7.5.6.1. Offering breakdown size & forecasts, 2025-2035
7.5.6.2. Technology breakdown size & forecasts, 2025-2035
7.6. LAMEA Artificial Intelligence in Supply Chain Market
7.6.1. Brazil Artificial Intelligence in Supply Chain Market
7.6.1.1. Offering breakdown size & forecasts, 2025-2035
7.6.1.2. Technology breakdown size & forecasts, 2025-2035
7.6.2. Argentina Artificial Intelligence in Supply Chain Market
7.6.2.1. Offering breakdown size & forecasts, 2025-2035
7.6.2.2. Technology breakdown size & forecasts, 2025-2035
7.6.3. UAE Artificial Intelligence in Supply Chain Market
7.6.3.1. Offering breakdown size & forecasts, 2025-2035
7.6.3.2. Technology breakdown size & forecasts, 2025-2035
7.6.4. Saudi Arabia (KSA Artificial Intelligence in Supply Chain Market
7.6.4.1. Offering breakdown size & forecasts, 2025-2035
7.6.4.2. Technology breakdown size & forecasts, 2025-2035
7.6.5. Africa Artificial Intelligence in Supply Chain Market
7.6.5.1. Offering breakdown size & forecasts, 2025-2035
7.6.5.2. Technology breakdown size & forecasts, 2025-2035
7.6.6. Rest of LAMEA Artificial Intelligence in Supply Chain Market
7.6.6.1. Offering breakdown size & forecasts, 2025-2035
7.6.6.2. Technology breakdown size & forecasts, 2025-2035
Chapter 8. Company Profiles
8.1. Top Market Strategies
8.2. Company Profiles
8.2.1. IBM Corporation
8.2.1.1. Company Overview
8.2.1.2. Key Executives
8.2.1.3. Company Snapshot
8.2.1.4. Financial Performance (Subject to Data Availability)
8.2.1.5. Product/Services Port
8.2.1.6. Recent Development
8.2.1.7. Market Strategies
8.2.1.8. SWOT Analysis
8.2.2. Amazon Web Services (AWS)
8.2.3. Microsoft Corporation
8.2.4. Oracle Corporation
8.2.5. SAP SE
8.2.6. Blue Yonder
8.2.7. NVIDIA Corporation
8.2.8. C3.ai
8.2.9. Google Cloud
8.2.10. Infor
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.