Report cover image

Global Artificial Intelligence in Renewable Energy Market Size, Trend & Opportunity Analysis Report, by Type (Solutions, Services), Application (Robotics, Renewable Energy Management, Demand Forecasting, Safety, Security & Infrastructure), and Forecast, 2

Published Aug 09, 2025
Length 285 Pages
SKU # KAIS20696901

Description

Market Definition and Introduction

The global artificial intelligence (AI) in renewable energy market was valued at USD 11.30 billion in 2024 and is poised to reach USD 205.97 billion by 2035, growing at a staggering CAGR of 30.2% over the forecast period (2025–2035). Artificial Intelligence has emerged as the most strategic enabler of advancement in the clean energy ecosystem. Up until October 2023, this process is likely to include energy optimization and load balancing, predictive maintenance, and climate forecasting. AI-enabled platforms are being adopted very quickly to radically alter how the managers of assets in solar, wind, and hydro energy are rethinking their approaches to managing operational risk and, most importantly, intelligent decision-making. Efficiency improvements are not the only outcomes of this fact-finding adventure, but are also in the process of breaking the new paradigm of sustainability and cost reduction in a global power landscape.

AI, such as deep learning, reinforcement, and natural language processing, are entering into the internal works of renewable energy systems at a stage where grid decentralization and distributed energy resources will always be a way of life. With this tool, utilities and independent power producers can analyze vast amounts of data dynamically and in real-time, much more accurately forecast energy demand, and better manage any anomalies found throughout infrastructure. AI will also improve energy storage and connect renewable sources to smart grids, so even during strong voltage peaks or power outages, energy can be used directly when needed without any hurdles.

On the supply side, rapid digitalization in the energy sector has provided the premises for many of the new developments in AI solutions between technology giants and energy companies. Investment by companies has surged further as they aim at intelligent automation, edge computing, and digital twin models to mirror renewables installations with continuous optimization. As net-zero targets are set and reinforced across individual countries and the requirement for ESG mandates increases, AI is by default being regarded as a pillar and not as a value-added utility in establishing resilient, transparent, and intelligent renewable energy infrastructures.

Recent Developments in the Industry

IBM Corporation introduced AI-enabled tools for energy optimization to enhance the performance ratio in wind and solar.

In June 2024, IBM Corporation will launch a set of advanced AI tools specifically developed for real-time maintenance and efficiency optimization of solar PV farms and wind turbines. The system is based on federated learning technology that localizes the processing of energy data for enhanced autonomy and sustainability of off-grid installations.

Siemens AG and Enel Group partner in the development of predictive AI for grid stability and blackout avoidance.

In May 2024, Siemens AG signed a strategic partnership agreement with Enel Group to establish predictive analytics based on AI technology in the smart grid infrastructure of Enel. The collaboration aims to predict overloads on the grid and automatic responses to reduce blackout occurrences in regions rich in electricity consumption.

To enhance an already advanced AI capability in energy prediction, SparkCognition merged with a leading renewable forecasting startup.

In February 2024, the company SparkCognition finished acquiring the AI-driven predictive startup SolarCast, which developed microclimate data modeling for solar power plants. The acquired technology positions SparkCognition to further strengthen short- and long-term forecasting in maximizing renewable output.

Market Dynamics

Renewable Energy Deployment Surge Driving Demand for AI Integration at Scale. Renewables are facing exponential growth in capacity.

Making it very difficult to handle the complexity that arises with decentralized and variable energy sources. AI supports adaptive energy distribution, predictive diagnostics, and performance forecasting-all of which are essential to the reliability of renewable-powered grids. This has heralded an aggressive investment in AI by governments and utility operators to scale up operations and help reduce carbon footprints.

AI Integration Is Reshaping Operational Efficiency Of Energy Infrastructure And Smart Grids

Smart grids with inbuilt AI tools create a new paradigm for the distribution, storage, and consumption of electric energy. Technologies such as computer vision and machine learning have been introduced into the fault detection process for solar panels and wind blades, while AI-based demand forecasting weighs real-time energy supply against consumption trends. This facilitates providers' ability to mitigate inefficiencies before they manifest, resulting in benefits in terms of reduction in downtime and costs, while in turn providing customers with more reliable and clean energy.

Data-oriented Predictive Analytics Are Enabling Renewable Infrastructure Management based on Proactivity

One of the most convincing use cases for AI in renewable energy is predictive maintenance. By leveraging real-time sensor data from solar and wind installations, the AI system can forecast failures with considerable accuracy and suggest optimal maintenance schedules. This helps to minimize unplanned downtimes, increase asset lifetime, protect stakeholders against capital-eroding outages, and finally safeguard long-term ROI.

Governmental Incentives and ESG Pressures are Catalyzing Innovation Within the AI-Renewable Convergence

The post-COVID-19 green recovery programs, and the urgency of complying with environment, social, governance (ESG) guidelines, are accentuating the need for utilities and governments to utilize AI as a mechanism of transparency and accountability. Initiatives like the U.S. Department of Energy's AI for Energy roadmap and Digital Green Deal of the European Union are enabling both start-ups and old-line companies to create AI solutions that optimize energy use but comply with thresholds.

Donkeys for AI across the developing world to ensure that sustainable, intelligent energy is available

Surplus availability of reasonably priced computing and open-source AI systems translates into developing countries going in for deploying intelligent energy systems grassroots level. AI microgrids, solar home systems, and remote diagnostics are becoming the norm in off-grid settings, enabling inclusive energy access while leapfrogging current technology infrastructure bottlenecks.

Attractive Opportunities in the Market

AI in Energy Trading – Autonomous trading algorithms optimize real-time buying and selling of renewables.
Climate Forecasting and Disaster Preparedness – Machine learning improves weather prediction for wind and solar farms.
Decentralized Grids and Edge Computing – AI at the edge enhances energy analytics in remote installations.
Digital Twins in Renewable Assets – Virtual replicas reduce risk and improve renewable plant performance.
EV Charging and Grid Synchronization – AI optimizes energy allocation between renewables and EV infrastructure.
Smart Cities Integration – AI-driven energy systems support adaptive urban energy management strategies.
Predictive Maintenance as a Service – SaaS-based AI solutions offer remote diagnostics for renewable asset managers.
Robotics in Solar Cleaning and Wind Turbine Inspection – AI-powered automation enhances safety and efficiency.

Report Segmentation

By Type: Solutions, Services

By Application: Robotics, Renewable Energy Management, Demand Forecasting, Safety, Security & Infrastructure

By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)

Key Market Players

IBM Corporation, Siemens AG, General Electric, Schneider Electric, Microsoft Corporation, ABB Ltd., Oracle Corporation, Enel Group, AutoGrid Systems, and SparkCognition.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025-2035
Report Pages: 293

Dominating Segments

Solutions Segment Leads Due to AI-Driven Grid Management and Forecasting Technologies

The solutions segment is the leading segment in the AI in renewable energy market with the advanced implementation of modern software platforms that manage analytics on the grid, assets, and renewable load balancing. AI solutions provide very high scalability and seamless integration within the current infrastructure for energy providers to make real-time decisions based on the dynamic demand of markets and fluctuations across environments.

Renewable Energy Management Holds Maximum Adoption for AI Applications within the Industry

Within application areas, managing renewable energy constitutes a significant market share, as AI is widely utilized for forecasting production levels, monitoring system health, and optimizing outputs across multiple renewable energy types. These applications become more crucial where solar, wind, and storage resources are integrated and jointly managed in a multi-source energy ecosystem. AI transforms management from a reactive state to a predictive one, minimizing waste and improving synchronization.

Robotics and Predictive Maintenance Tools Boost Growth of Services Offerings

Increasing rapidly are service-based solutions, especially when robotics and AI diagnostics intermingle for new technologies in the maintenance and inspections of renewable buildings. Automated drone inspection, AI-assisted cleaning of solar panels, and remote health checks of turbines are increasingly becoming standard across the industries. These innovations not only brainstorm the manpower, but also provide an increased sense of safety and efficiency in service, which in the long run keeps incrementing AI-enabled services.

Key Takeaways

AI-Driven Growth – AI is transforming how clean energy is managed, forecasted, and optimized.
Solutions Dominate – Platforms for forecasting, optimization, and asset analytics hold the majority share.
Energy Management in Focus – AI solutions for energy load and grid operations lead demand.
Automation Drives Efficiency – Robotics and predictive diagnostics reduce downtime and boost safety.
Smart Infrastructure Evolution – AI integrates with smart cities, EVs, and decentralized grids.
ESG and Policy Push – Green investments and compliance needs fuel AI adoption in energy.
Edge Computing and Microgrids – AI democratizes energy access in off-grid and rural zones.
Cloud and SaaS Offerings – Subscription-based AI tools increase accessibility and agility.
Asia-Pacific to Boom – Renewable infrastructure investments accelerate AI use in APAC.
Cross-Industry Collaboration – Energy-tech convergence fuels innovation in AI renewables.

Regional Insights

North America maintains leadership with a robust digital infrastructure and AI adoption in utilities

North America has the maximum share of the world market for AI in renewable energy. This is based on rapid adoption of AI load in utility-scale installations, well-established energy analytics ecosystems, and substantial U.S.-based investments by technology conglomerates. The region is at the top in the integration of smart grids, AI-based predictive tools, and EV charging optimization technologies.

Europe Moves on AI Investment with Sustainability and Climate Action Policies Linearly Aggressive

Europe is an accentuated force under robust policy frameworks pledging digital energy transformation alongside net-zero targets. Germany, the Netherlands, and the UK are using AI applications to improve offshore wind analytics, solar grid balancing, and real-time carbon footprint monitoring, respectively. Regulatory support and funding for smart energy innovations are scaling up the integration of AI across countries.

Asia-Pacific Emerges as the Fastest-Growing Region for Large-scale Renewable Expansion Projects

Asia-Pacific is likely to record possible growth rates in a gradually executed capacity for renewables, upgrading digital infrastructure, and beneficial government program structure across China, India, Japan, and Southeast Asia. The word AI is emerging in countries in application areas addressing load variations, energy theft, and aging infrastructure, circumventing these reasons and energizing APAC as a fast hub for intelligent renewable innovations.

Latin America and the Middle East & Africa Begin Adoption of AI in Emerging Energy Infrastructure

In this respect, Latin America and the Middle East & Africa are starting to gain their first experiences with AI applications in new energy infrastructure: from the remote monitoring of off-grid solar installations to predictive diagnostics for wind farms. While these are still early days, increased digital literacy, green financing, and projects in solar electrification are expected to drive forward the adoption of AI across energy systems in these regions.

Core Strategic Questions Answered in This Report

Q. What is the expected growth trajectory of artificial intelligence in the renewable energy market from 2024 to 2035?

The global artificial intelligence in renewable energy market is expected to surge from USD 11.30 billion in 2024 to USD 205.97 billion by 2035, growing at a robust CAGR of 30.2%. This expansion is driven by the critical need for intelligent energy management, predictive maintenance, and the optimization of decentralized renewable infrastructures.

Q. Which key factors are fuelling the growth of artificial intelligence in the renewable energy market?

Several factors are propelling the market forward:

Surging demand for predictive analytics and energy forecasting
Rapid growth of smart grids and IoT-enabled energy devices
Government incentives and ESG-driven investment strategies
Increasing complexity in energy infrastructure requires AI-driven automation
Integration of AI in EV charging, storage, and distributed energy networks

Q. What are the primary challenges hindering the growth of artificial intelligence in the renewable energy market?

Challenges include:
Data security and cybersecurity concerns in smart grids
High capital investment in AI infrastructure and digital transformation
Shortage of AI-skilled workforce in energy management sectors
Lack of standardized regulatory frameworks for AI use in energy
Resistance to technology adoption in traditional energy enterprises

Q. Which regions currently lead the artificial intelligence in the renewable energy market in terms of market share?

North America leads the market due to strong digital infrastructure, AI expertise, and proactive utility investments. Europe closely follows, supported by strict green mandates and innovation in AI-powered energy systems.

Q. What emerging opportunities are anticipated in the artificial intelligence in renewable energy market?

Key emerging opportunities include:
AI integration in microgrids and rural electrification projects
Robotics-driven O&M services for renewable assets
Cloud-based energy forecasting platforms
AI-led sustainability monitoring tools for carbon management
Smart city and EV infrastructure planning using predictive AI tools

Key Benefits for Stakeholders

The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter's Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.

Table of Contents

285 Pages
Chapter 1. Market Snapshot
1.1. Market Definition & Report Overview
1.2. Market Segmentation
1.3. Key Takeaways
1.3.1. Top Investment Pockets
1.3.2. Top Winning Strategies
1.3.3. Market Indicators Analysis
1.3.4. Top Impacting Factors
1.4. Application Ecosystem Analysis
1.4.1. 360’ Analysis
Chapter 2. Executive Summary
2.1. CEO/CXO Standpoint
2.2. Strategic Insights
2.3. ESG Analysis
2.4 Market Attractiveness Analysis (top leader’s point of view on market)
2.5.key Findings
Chapter 3. Research Methodology
3.1 Research Objective
3.2 Supply Side Analysis
3.1.1. Primary Research
3.1.2. Secondary Research
3.3 Demand Side Analysis
3.1.3. Primary Research
3.1.4. Secondary Research
3.2. Forecasting Models
3.2.1. Assumptions
3.2.2. Forecasts Parameters ()
3.3. Competitive breakdown
3.3.1. Market Positioning
3.3.2. Competitive Strength
3.4. Scope of the Study
3.4.1. Research Assumption
3.4.2. Inclusion & Exclusion
3.4.3. Limitations
Chapter 4. Chapter 4. Application Landscape
4.1. Market Dynamics
4.1.1. Drivers
4.1.2. Restraints
4.1.3. Opportunities
4.2. Porter’s 5 Forces Model
4.2.1. Bargaining Power of Buyer
4.2.2. Bargaining Power of Supplier
4.2.3. Threat of New Entrants
4.2.4. Threat of Substitutes
4.2.5. Competitive Rivalry
4.3. Value Chain Analysis
4.4. PESTEL Analysis
4.5. Pricing Analysis and Trends
4.6. Key growth factors and trends analysis
4.7. Market Share Analysis (2025)
4.8. Top Winning Strategies (2025)
4.9. Trade Data Analysis (Import Export)
4.10. Regulatory Guidelines
4.11. Historical Data Analysis
4.12. Analyst Recommendation & Conclusion
Chapter 5. Global Artificial Intelligence in Renewable Energy Market Size & Forecasts by Type 2025-2035
5.1. Market Overview
5.1.1. Market Size and Forecast By Type 2025-2035
5.2. Solutions
5.2.1. Market definition, current market trends, growth factors, and opportunities
5.2.2. Market size analysis, by region, 2025-2035
5.2.3. Market share analysis, by country, 2025-2035
5.3. Services
5.3.1. Market definition, current market trends, growth factors, and opportunities
5.3.2. Market size analysis, by region, 2025-2035
5.3.3. Market share analysis, by country, 2025-2035
Chapter 6. Global Artificial Intelligence in Renewable Energy Market Size & Forecasts by Application 2025–2035
5.1. Market Overview
6.1.1. Market Size and Forecast By Type 2025-2035
6.2. Robotics
6.2.1. Market definition, current market trends, growth factors, and opportunities
6.2.2. Market size analysis, by region, 2025-2035
6.2.3. Market share analysis, by country, 2025-2035
6.3. Renewable Energy Management
6.3.1. Market definition, current market trends, growth factors, and opportunities
6.3.2. Market size analysis, by region, 2025-2035
6.3.3. Market share analysis, by country, 2025-2035
6.4. Demand Forecasting
6.4.1. Market definition, current market trends, growth factors, and opportunities
6.4.2. Market size analysis, by region, 2025-2035
6.4.3. Market share analysis, by country, 2025-2035
6.5. Safety Security & Infrastructure
6.5.1. Market definition, current market trends, growth factors, and opportunities
6.5.2. Market size analysis, by region, 2025-2035
6.5.3. Market share analysis, by country, 2025-2035
Chapter 7. Global Artificial Intelligence in Renewable Energy Market Size & Forecasts by Region 2025–2035
7.1. Regional Overview 2025-2035
7.2. Top Leading and Emerging Nations
7.3. North America Artificial Intelligence in Renewable Energy Market
7.3.1. U.S. Artificial Intelligence in Renewable Energy Market
7.3.1.1. Type breakdown size & forecasts, 2025-2035
7.3.1.2. Application breakdown size & forecasts, 2025-2035
7.3.2. Canada Artificial Intelligence in Renewable Energy Market
7.3.2.1. Type breakdown size & forecasts, 2025-2035
7.3.2.2. Application breakdown size & forecasts, 2025-2035
7.3.3. Mexico Artificial Intelligence in Renewable Energy Market
7.3.3.1. Type breakdown size & forecasts, 2025-2035
7.3.3.2. Application breakdown size & forecasts, 2025-2035
7.4. Europe Artificial Intelligence in Renewable Energy Market
7.4.1. UK Artificial Intelligence in Renewable Energy Market
7.4.1.1. Type breakdown size & forecasts, 2025-2035
7.4.1.2. Application breakdown size & forecasts, 2025-2035
7.4.2. Germany Artificial Intelligence in Renewable Energy Market
7.4.2.1. Type breakdown size & forecasts, 2025-2035
7.4.2.2. Application breakdown size & forecasts, 2025-2035
7.4.3. France Artificial Intelligence in Renewable Energy Market
7.4.3.1. Type breakdown size & forecasts, 2025-2035
7.4.3.2. Application breakdown size & forecasts, 2025-2035
7.4.4. Spain Artificial Intelligence in Renewable Energy Market
7.4.4.1. Type breakdown size & forecasts, 2025-2035
7.4.4.2. Application breakdown size & forecasts, 2025-2035
7.4.5. Italy Artificial Intelligence in Renewable Energy Market
7.4.5.1. Type breakdown size & forecasts, 2025-2035
7.4.5.2. Application breakdown size & forecasts, 2025-2035
7.4.6. Rest of Europe Artificial Intelligence in Renewable Energy Market
7.4.6.1. Type breakdown size & forecasts, 2025-2035
7.4.6.2. Application breakdown size & forecasts, 2025-2035
7.5. Asia Pacific Artificial Intelligence in Renewable Energy Market
7.5.1. China Artificial Intelligence in Renewable Energy Market
7.5.1.1. Type breakdown size & forecasts, 2025-2035
7.5.1.2. Application breakdown size & forecasts, 2025-2035
7.5.2. India Artificial Intelligence in Renewable Energy Market
7.5.2.1. Type breakdown size & forecasts, 2025-2035
7.5.2.2. Application breakdown size & forecasts, 2025-2035
7.5.3. Japan Artificial Intelligence in Renewable Energy Market
7.5.3.1. Type breakdown size & forecasts, 2025-2035
7.5.3.2. Application breakdown size & forecasts, 2025-2035
7.5.4. Australia Artificial Intelligence in Renewable Energy Market
7.5.4.1. Type breakdown size & forecasts, 2025-2035
7.5.4.2. Application breakdown size & forecasts, 2025-2035
7.5.5. South Korea Artificial Intelligence in Renewable Energy Market
7.5.5.1. Type breakdown size & forecasts, 2025-2035
7.5.5.2. Application breakdown size & forecasts, 2025-2035
7.5.6. Rest of APAC Artificial Intelligence in Renewable Energy Market
7.5.6.1. Type breakdown size & forecasts, 2025-2035
7.5.6.2. Application breakdown size & forecasts, 2025-2035
7.6. LAMEA Artificial Intelligence in Renewable Energy Market
7.6.1. Brazil Artificial Intelligence in Renewable Energy Market
7.6.1.1. Type breakdown size & forecasts, 2025-2035
7.6.1.2. Application breakdown size & forecasts, 2025-2035
7.6.2. Argentina Artificial Intelligence in Renewable Energy Market
7.6.2.1. Type breakdown size & forecasts, 2025-2035
7.6.2.2. Application breakdown size & forecasts, 2025-2035
7.6.3. UAE Artificial Intelligence in Renewable Energy Market
7.6.3.1. Type breakdown size & forecasts, 2025-2035
7.6.3.2. Application breakdown size & forecasts, 2025-2035
7.6.4. Saudi Arabia (KSA Artificial Intelligence in Renewable Energy Market
7.6.4.1. Type breakdown size & forecasts, 2025-2035
7.6.4.2. Application breakdown size & forecasts, 2025-2035
7.6.5. Africa Artificial Intelligence in Renewable Energy Market
7.6.5.1. Type breakdown size & forecasts, 2025-2035
7.6.5.2. Application breakdown size & forecasts, 2025-2035
7.6.6. Rest of LAMEA Artificial Intelligence in Renewable Energy Market
7.6.6.1. Type breakdown size & forecasts, 2025-2035
7.6.6.2. Application breakdown size & forecasts, 2025-2035
Chapter 8. Company Profiles
8.1. Top Market Strategies
8.2. Company Profiles
8.2.1. IBM Corporation
8.2.1.1. Company Overview
8.2.1.2. Key Executives
8.2.1.3. Company Snapshot
8.2.1.4. Financial Performance (Subject to Data Availability)
8.2.1.5. Product/Services Port
8.2.1.6. Recent Development
8.2.1.7. Market Strategies
8.2.1.8. SWOT Analysis
8.2.2. Siemens AG
8.2.3. General Electric
8.2.4. Schneider Electric
8.2.5. Microsoft Corporation
8.2.6. ABB Ltd.
8.2.7. Oracle Corporation
8.2.8. Enel Group
8.2.9. AutoGrid Systems
8.2.10. SparkCognition
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.