Report cover image

Global Artificial Intelligence in Precision Medicine Market Size, Trend & Opportunity Analysis Report, by Technology (Querying Method, Context Aware Processing), Component (Hardware), and Forecast, 2025–2035

Published Aug 09, 2025
Length 285 Pages
SKU # KAIS20696900

Description

Market Definition and Introduction

The global artificial intelligence (AI) in precision medicine market, valued at USD 2.29 billion in 2024, is projected to reach an impressive USD 69.24 billion by 2035, expanding at a remarkable CAGR of 36.33% during the forecast period (2025–2035). This explosive growth trajectory underscores the accelerating convergence of AI-driven analytics and personalized healthcare delivery, a paradigm shift redefining how diseases are diagnosed, monitored, and treated. By enabling clinicians to extract actionable insights from vast datasets ranging from genomic sequences to real-time patient health records, AI is not only enhancing diagnostic accuracy but also driving therapeutic decisions uniquely tailored to individual patient profiles.

With this, growth has coincided with applications of AI in precision medicine that grew out of the upheaval of high-throughput sequencing technology and some novel imaging modalities, along with the advent of wearable health monitoring systems. The real work of AI algorithms for identification of disease biomarkers, prediction of treatment response, and marking early signs of disease progression must come from pattern recognition on scales hitherto unthinkable to human contemplation. Accelerated clinical decision-making due to this is shortening the timelines to introduce drugs to the marketplace, aiming targeted therapeutic intervention, and in the end, lowering costs to the healthcare system.

For a variety of reasons, the global health landscape sees AI increasingly recognized as a key enabler for personalized treatment. The pharmaceutical and biotechnology sector increasingly embeds AI tools deep inside its R&D workflows, to not only optimize candidate selection in drug discovery but also assist with clinical trial patient stratification with a precision hitherto unseen. Meanwhile, healthcare systems have set off with AI-powered platforms that turn patient data into cohesive clinical narratives, which launch a new era of data-informed medicine that promises better patient outcomes with higher efficiency and value-based care delivery.

Recent Developments in the Industry

In September 2024, NVIDIA Corporation announced the launch of its latest Clara Holoscan MGX platform, designed to bring real-time AI capabilities to next-generation medical devices, enabling faster diagnostic imaging and more accurate clinical decision support.

In August 2024, IBM Watson Health entered a strategic collaboration with the Mayo Clinic to develop AI models for personalized cancer treatment pathways, integrating genomic profiling data with longitudinal patient health records to enhance precision oncology outcomes.

In January 2023, Microsoft Corporation acquired Nuance Communications to strengthen its healthcare AI capabilities, particularly in clinical documentation, ambient intelligence, and AI-driven decision support, with a vision to reduce physician burnout and enhance patient engagement.

Market Dynamics

AI-Centric Pathways for Clinical Decision-Making are Rapidly Accelerating the Adoption of Precision Medicine

The algorithms of AI, with their rising use, are seen to improve on the specific aspects of diagnostic imaging, pathology, and genomics to elevate the accuracy and speed of disease detection beyond limits. This is made possible through AI, which drives into many facets of patient data-his subtle patterning indications of making early diagnosis and increased treatment. Such integration reduces human fault lines in the creation of treatment plans that address specific parameters belonging to each patient.

Fuels AI-Enabling Therapeutic Development Expanding Genomic Data Use

Entirely new classes of genomic data have been produced with the widespread adoption of next-generation sequencing. In that context, AI will interrogate the data, reveal disease-related genetic alterations, and indicate the best-targeting treatment options. The favorable publicity that precision medicine is generating makes the importance of AI even more indispensable in terms of consolidating and putting into operating form genomic perceptions.

Private Equity and Collaborative Ventures Are Catalysts for Innovations in AI Healthcare

Avant-garde companies in technology-commercialization today, with pharmaceutical powerhouses and literally all health care providers, are wasting invested millions and sometimes billions of dollars in AI-based health solutions. Collaboratively creating AI tools for rapid scalability across clinical settings makes precision medicine innovations accessible across the globe. This focusing of efforts is intended to take AI applications in clinical workflows as much as possible by being unobtrusive to existing operating structures.

The Advent of Cloud-Based AI Platforms Transforming Data Accessibility in Precision Medicine

Cloud-enabled AI architectures allow all healthcare providers through real-time processing and analysis to secure patient data, notwithstanding the geographical divide. Such democratization of advanced analytics has opened entry to smaller healthcare institutions to use the power of AI without much required initial investment in infrastructure, thus enhancing equality in accessing precision medicine capabilities.

Attractive Opportunities in the Market

Expansion of multi-omics integration platforms to enable comprehensive disease profiling.
AI-powered drug repurposing strategies to reduce development costs and timelines.
Cloud-based AI diagnostic systems for resource-limited healthcare settings.
Personalized oncology treatment plans leveraging predictive analytics.
Real-time patient monitoring using AI-integrated wearable devices.
Advances in AI-driven biomarker discovery for early disease detection.
Emergence of explainable AI (XAI) to enhance clinician trust and regulatory compliance.
AI-enabled clinical trial optimization for patient recruitment and retention.

Report Segmentation

By Technology: Querying Method, Context-Aware Processing

By Component:
Hardware

By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)

Key Market Players

IBM Watson Health, NVIDIA Corporation, Intel Corporation, Tempus, Sophia Genetics, PathAI, Microsoft Corporation, Deep Genomics, GE Healthcare, and PrecisionLife.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025-2035
Report Pages: 293

Dominating Segments

The hardware segment commands precision medicine artificial intelligence with powerful computational infrastructure.

The hardware segment plays the most important role in allowing AI algorithms to function at the precision and pace required by precision medicine applications. High-performance computational facilities, GPUs, and edge systems all support the real-time processing of data used equally for hospital-based AI deployment and for services relying on the cloud.

Advances in Querying Method Technology Are Speeding Data-Driven Clinical Decisions

Querying method technologies are enabling AI systems to retrieve and analyze vast and diverse datasets rapidly. Such capabilities allow clinicians to access pertinent patient data in context to improve the accuracy of diagnosis and accelerate the treatment that is suited to the individual.

Context-aware processing is revolutionizing the provision of personalized care in precision medicine.

Context-aware processing allows artificial intelligence systems to interpret patient data within a medical history, lifestyle conditioning, and environmental settings context. This deep comprehension leads to highly personalized treatment recommendations and optimized ways of engaging patients.

Key Takeaways

AI-Driven Transformation – Precision medicine advancements are increasingly powered by AI-enabled analytics.
Hardware Dominance – High-performance computing infrastructure underpins AI’s operational capabilities.
Querying Method Growth – Enhanced data retrieval boosts decision-making speed and accuracy.
Context-Aware Innovations – AI systems adapt treatment to individual lifestyle and medical context.
Multi-omics Integration – Genomic, proteomic, and metabolomic data fusion enables deeper disease insights.
Real-Time Monitoring – AI wearables transform chronic disease management and early detection.
Cloud Democratization – Scalable AI tools accessible even in emerging healthcare markets.
Pharma-AI Synergy – Collaborative innovation accelerates targeted drug development.
Asia-Pacific Momentum – Rapid adoption of AI in biomedicine fuels regional market expansion.
Explainable AI – Transparency in AI decision-making enhances trust and compliance.

Regional Insights

North America: The AI-Powered Precision Medicine Leader

The largest share of the global AI in precision medicine market is in North America due to strong technological infrastructure, maximum adoption of healthcare IT, and the presence of key AI innovators. The U.S. takes the lead with significant amounts of investment in AI research and early adoption by major hospital networks.

Europe Drives the Ethical Development of AI in Precision Medicine via Funding Mechanisms and Research

Europe remains strong with strategic funding programs and collaborative research initiatives. Moreover, strong regulatory frameworks are in place to guide the ethical deployment of AI. The UK, Germany, and France are leading countries in AI applications in genomic medicine and cancer treatment.

Asia-Pacific Fastest the Growing Region for AI in Precision Medicine

The APAC region is growing at an extremely fast pace, driven by massive government investments into AI, healthcare digitization, and increasing genomic sequencing initiatives across China, India, and Japan. This region has an immense number of patients, providing virtually unlimited possibilities for training and validating AI models.

Latin America and the Middle East & Africa Slowly Begin Their Journey in Integrating AI into Health Care Ecosystems

Adoption may be at a very nascent stage; however, across Latin America and the Middle East & and Africa, investments are being made into programs targeting healthcare modernization with AI-based diagnostic and treatment solutions. These will further lay the infrastructure for the broader adoption of precision medicine in the next ten years.

Core Strategic Questions Answered in This Report

Q. What is the expected growth trajectory of artificial intelligence in the precision medicine market from 2024 to 2035?

The global artificial intelligence in precision medicine market is projected to grow from USD 2.29 billion in 2024 to USD 69.24 billion by 2035, reflecting a CAGR of 36.33% over the forecast period (2025–2035). This exponential growth is fueled by advancements in AI algorithms, increasing genomic data availability, and rising demand for personalized healthcare solutions.

Q. Which key factors are fuelling the growth of artificial intelligence in the precision medicine market?

Several factors are driving market growth:

Surging demand for personalized treatment solutions in oncology and chronic diseases.
Integration of AI in genomic data interpretation and clinical decision-making.
Increasing adoption of cloud-based AI healthcare platforms.
Expansion of AI-powered diagnostics and wearable monitoring systems.
Government investments in healthcare AI infrastructure.
Collaborations between technology companies and pharmaceutical firms for targeted drug development.

Q. What are the primary challenges hindering the growth of artificial intelligence in the precision medicine market?

Key challenges include:

Complex regulatory environments for AI in healthcare.
Data privacy and cybersecurity concerns in handling sensitive patient information.
Shortage of skilled AI and healthcare IT professionals.
High infrastructure costs for advanced AI deployments.
Interoperability issues between diverse healthcare data systems.

Q. Which regions currently lead the artificial intelligence in the precision medicine market in terms of market share?

North America leads due to advanced healthcare infrastructure, high AI adoption, and strong R&D investment, particularly in the U.S. Europe follows with active regulatory support and robust academic-industry collaborations.

Q. What emerging opportunities are anticipated in the artificial intelligence in precision medicine market?

Opportunities include:

Expansion of AI in predictive analytics for preventive care.
Integration of wearable health data into precision medicine platforms.
Use of AI in multi-omics data interpretation for rare diseases.
Development of explainable AI systems to enhance clinical trust.
AI-driven virtual clinical trials for accelerated drug approval.

Key Benefits for Stakeholders

The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter's Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.

Table of Contents

285 Pages
Chapter 1. Market Snapshot
1.1. Market Definition & Report Overview
1.2. Market Segmentation
1.3. Key Takeaways
1.3.1. Top Investment Pockets
1.3.2. Top Winning Strategies
1.3.3. Market Indicators Analysis
1.3.4. Top Impacting Factors
1.4. Component Ecosystem Analysis
1.4.1. 360’ Analysis
Chapter 2. Executive Summary
2.1. CEO/CXO Standpoint
2.2. Strategic Insights
2.3. ESG Analysis
2.4 Market Attractiveness Analysis (top leader’s point of view on market)
2.5.key Findings
Chapter 3. Research Methodology
3.1 Research Objective
3.2 Supply Side Analysis
3.1.1. Primary Research
3.1.2. Secondary Research
3.3 Demand Side Analysis
3.1.3. Primary Research
3.1.4. Secondary Research
3.2. Forecasting Models
3.2.1. Assumptions
3.2.2. Forecasts Parameters ()
3.3. Competitive breakdown
3.3.1. Market Positioning
3.3.2. Competitive Strength
3.4. Scope of the Study
3.4.1. Research Assumption
3.4.2. Inclusion & Exclusion
3.4.3. Limitations
Chapter 4. Chapter 4. Component Landscape
4.1. Market Dynamics
4.1.1. Drivers
4.1.2. Restraints
4.1.3. Opportunities
4.2. Porter’s 5 Forces Model
4.2.1. Bargaining Power of Buyer
4.2.2. Bargaining Power of Supplier
4.2.3. Threat of New Entrants
4.2.4. Threat of Substitutes
4.2.5. Competitive Rivalry
4.3. Value Chain Analysis
4.4. PESTEL Analysis
4.5. Pricing Analysis and Trends
4.6. Key growth factors and trends analysis
4.7. Market Share Analysis (2025)
4.8. Top Winning Strategies (2025)
4.9. Trade Data Analysis (Import Export)
4.10. Regulatory Guidelines
4.11. Historical Data Analysis
4.12. Analyst Recommendation & Conclusion
Chapter 5. Global Artificial Intelligence in Precision Medicine Market Size & Forecasts by Technology 2025-2035
5.1. Market Overview
5.1.1. Market Size and Forecast By Technology 2025-2035
5.2. Querying Method
5.2.1. Market definition, current market trends, growth factors, and opportunities
5.2.2. Market size analysis, by region, 2025-2035
5.2.3. Market share analysis, by country, 2025-2035
5.3. Context Aware Processing
5.3.1. Market definition, current market trends, growth factors, and opportunities
5.3.2. Market size analysis, by region, 2025-2035
5.3.3. Market share analysis, by country, 2025-2035
Chapter 6. Global Artificial Intelligence in Precision Medicine Market Size & Forecasts by Component 2025–2035
5.1. Market Overview
6.1.1. Market Size and Forecast By Technology 2025-2035
6.2. Hardware
6.2.1. Market definition, current market trends, growth factors, and opportunities
6.2.2. Market size analysis, by region, 2025-2035
6.2.3. Market share analysis, by country, 2025-2035
Chapter 7. Global Artificial Intelligence in Precision Medicine Market Size & Forecasts by Region 2025–2035
7.1. Regional Overview 2025-2035
7.2. Top Leading and Emerging Nations
7.3. North America Artificial Intelligence in Precision Medicine Market
7.3.1. U.S. Artificial Intelligence in Precision Medicine Market
7.3.1.1. Technology breakdown size & forecasts, 2025-2035
7.3.1.2. Component breakdown size & forecasts, 2025-2035
7.3.2. Canada Artificial Intelligence in Precision Medicine Market
7.3.2.1. Technology breakdown size & forecasts, 2025-2035
7.3.2.2. Component breakdown size & forecasts, 2025-2035
7.3.3. Mexico Artificial Intelligence in Precision Medicine Market
7.3.3.1. Technology breakdown size & forecasts, 2025-2035
7.3.3.2. Component breakdown size & forecasts, 2025-2035
7.4. Europe Artificial Intelligence in Precision Medicine Market
7.4.1. UK Artificial Intelligence in Precision Medicine Market
7.4.1.1. Technology breakdown size & forecasts, 2025-2035
7.4.1.2. Component breakdown size & forecasts, 2025-2035
7.4.2. Germany Artificial Intelligence in Precision Medicine Market
7.4.2.1. Technology breakdown size & forecasts, 2025-2035
7.4.2.2. Component breakdown size & forecasts, 2025-2035
7.4.3. France Artificial Intelligence in Precision Medicine Market
7.4.3.1. Technology breakdown size & forecasts, 2025-2035
7.4.3.2. Component breakdown size & forecasts, 2025-2035
7.4.4. Spain Artificial Intelligence in Precision Medicine Market
7.4.4.1. Technology breakdown size & forecasts, 2025-2035
7.4.4.2. Component breakdown size & forecasts, 2025-2035
7.4.5. Italy Artificial Intelligence in Precision Medicine Market
7.4.5.1. Technology breakdown size & forecasts, 2025-2035
7.4.5.2. Component breakdown size & forecasts, 2025-2035
7.4.6. Rest of Europe Artificial Intelligence in Precision Medicine Market
7.4.6.1. Technology breakdown size & forecasts, 2025-2035
7.4.6.2. Component breakdown size & forecasts, 2025-2035
7.5. Asia Pacific Artificial Intelligence in Precision Medicine Market
7.5.1. China Artificial Intelligence in Precision Medicine Market
7.5.1.1. Technology breakdown size & forecasts, 2025-2035
7.5.1.2. Component breakdown size & forecasts, 2025-2035
7.5.2. India Artificial Intelligence in Precision Medicine Market
7.5.2.1. Technology breakdown size & forecasts, 2025-2035
7.5.2.2. Component breakdown size & forecasts, 2025-2035
7.5.3. Japan Artificial Intelligence in Precision Medicine Market
7.5.3.1. Technology breakdown size & forecasts, 2025-2035
7.5.3.2. Component breakdown size & forecasts, 2025-2035
7.5.4. Australia Artificial Intelligence in Precision Medicine Market
7.5.4.1. Technology breakdown size & forecasts, 2025-2035
7.5.4.2. Component breakdown size & forecasts, 2025-2035
7.5.5. South Korea Artificial Intelligence in Precision Medicine Market
7.5.5.1. Technology breakdown size & forecasts, 2025-2035
7.5.5.2. Component breakdown size & forecasts, 2025-2035
7.5.6. Rest of APAC Artificial Intelligence in Precision Medicine Market
7.5.6.1. Technology breakdown size & forecasts, 2025-2035
7.5.6.2. Component breakdown size & forecasts, 2025-2035
7.6. LAMEA Artificial Intelligence in Precision Medicine Market
7.6.1. Brazil Artificial Intelligence in Precision Medicine Market
7.6.1.1. Technology breakdown size & forecasts, 2025-2035
7.6.1.2. Component breakdown size & forecasts, 2025-2035
7.6.2. Argentina Artificial Intelligence in Precision Medicine Market
7.6.2.1. Technology breakdown size & forecasts, 2025-2035
7.6.2.2. Component breakdown size & forecasts, 2025-2035
7.6.3. UAE Artificial Intelligence in Precision Medicine Market
7.6.3.1. Technology breakdown size & forecasts, 2025-2035
7.6.3.2. Component breakdown size & forecasts, 2025-2035
7.6.4. Saudi Arabia (KSA Artificial Intelligence in Precision Medicine Market
7.6.4.1. Technology breakdown size & forecasts, 2025-2035
7.6.4.2. Component breakdown size & forecasts, 2025-2035
7.6.5. Africa Artificial Intelligence in Precision Medicine Market
7.6.5.1. Technology breakdown size & forecasts, 2025-2035
7.6.5.2. Component breakdown size & forecasts, 2025-2035
7.6.6. Rest of LAMEA Artificial Intelligence in Precision Medicine Market
7.6.6.1. Technology breakdown size & forecasts, 2025-2035
7.6.6.2. Component breakdown size & forecasts, 2025-2035
Chapter 8. Company Profiles
8.1. Top Market Strategies
8.2. Company Profiles
8.2.1. IBM Watson Health
8.2.1.1. Company Overview
8.2.1.2. Key Executives
8.2.1.3. Company Snapshot
8.2.1.4. Financial Performance (Subject to Data Availability)
8.2.1.5. Product/Services Port
8.2.1.6. Recent Development
8.2.1.7. Market Strategies
8.2.1.8. SWOT Analysis
8.2.2. NVIDIA Corporation
8.2.3. Intel Corporation
8.2.4. Tempus
8.2.5. Sophia Genetics
8.2.6. PathAI
8.2.7. Microsoft Corporation
8.2.8. Deep Genomics
8.2.9. GE Healthcare
8.2.10. PrecisionLife
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.