Report cover image

Global Artificial Intelligence in Genomics Market Size, Trend & Opportunity Analysis Report, by Component (Hardware, Software), Technology (Machine Learning), and Forecast, 2025–2035

Published Aug 09, 2025
Length 285 Pages
SKU # KAIS20696897

Description

Market Definition and Introduction

The global artificial intelligence (AI) in genomics market is poised for transformational expansion, projected to leap from USD 1,040.01 million in 2024 to a staggering USD 66,821.92 million by 2035, progressing at an unprecedented CAGR of 46.0% during the forecast period (2025–2035). This highlights one of the areas where AI is transforming drug discovery, precision medicine, and diagnostics, reaching new heights in decoding complex genetic information at speeds and accuracies never thought possible by life sciences companies and research institutions. As the convergence of biotechnology and data science becomes even more profound, artificial intelligence is radically changing how genomic insights are extracted, interpreted, and applied across drug discovery, precision medicine, and diagnostics.

However, now that the entire global healthcare system leans toward personalized and predictive medicine, analysis has become inevitable: AI in genomics has transformed from experimentation to fundamentals. Algorithms could further distinguish genetic pattern assignment, forecasting gene expression, and identification of mutations with disease causation than traditional tools for data input analysis. From optimizing next-generation sequencing (NGS) analytics to building disease-specific genomic models, AI technologies are rapidly becoming instrumental in pushing the boundaries of modern healthcare innovation. Advances like this are opening up new worlds for oncologists, geneticists, and pharmaceutical developers in anticipation of disease prevention and targeted therapies.

As industry players increasingly adopt AI-powered platforms to exploit huge genomic datasets, boosting intensive bioinformatics workflows, this quantum switch creates tremendous savings both in terms of R&D effort accrued and significantly shortens time-to-market for new therapeutic discoveries. Thus, the inflow of demand for AI-enabled genomic software and hardware-integrated solutions has skyrocketed, making it one of the most fertile grounds for startup growth and tech-biotech partnerships. National genomic initiatives coupled with digital transformation within the healthcare sector in regions like North America, Europe, and Asia-Pacific will continue to underpin the upward projection of the market.

Recent Developments in the Industry

In March 2025, NVIDIA officially launched the cloud-native AI platform exclusively built for the acceleration and visualization of genomic data.

Based on NVIDIA Clara Parabricks, this platform gives real-time insights to researchers on complex sequencing data, improving large-scale genomic workflows.

In February 2025, Google DeepMind announced AlphaFold3.

In February 2025, Google DeepMind announced AlphaFold3 as the successor in its line of developments meant to take advantage of generative AI in developing amino acid sequence-to-structure predictions of proteins.

In September 2024, IBM Watson Health entered into a strategic collaboration.

In September 2024, IBM Watson Health entered into a strategic collaboration with Illumina in order to assimilate cognitive computing tools into clinical genomics workflows. This partnership aims to advance variant interpretation and clinical decision-making in oncology and rare diseases.

SOPHiA GENETICS launched an AI-based multimodal analysis platform in July 2024

SOPHiA GENETICS launched an AI-based multimodal analysis platform in July 2024, which integrates genomic, radiomic, and clinical data. The said solution aims at health systems interested in consolidating their precision medicine tools into one platform.

In January 2023, Microsoft Genomics extended its service offerings of Genomics-as-a-Service, powered by Azure.

In January 2023, Microsoft Genomics extended its service offerings of Genomics-as-a-Service, powered by Azure, to incorporate predictive analytics for hereditary diseases. This will help clinicians provide personalized care based on the entire genetic blueprint of the patient.

Market Dynamics

The applications of AI in drug discovery and genomic biomarker development have intensified the demand.

The AI demand in genomics has been gaining vast momentum as pharma companies and academic researchers use various ML algorithms for the discovery of novel drug targets and disease biomarkers. In a situation where clinical genomics datasets are ballooning with complexity and scale, AI-enabled platforms have become indispensable in analyzing this data and providing actionable insights. As drug pipelines increasingly hinge on genomic validation, the market is flooded with cross-disciplinary collaborations aimed at bringing about smarter and faster therapeutics.

Government-Backed Genomics Projects and Precision Medicine Programs Expand the AI Adoption Curve

Governments worldwide are making substantial investments in national genomic mapping initiatives with an emphasis on AI in processing and analyzing genetic data at the population scale. Initiatives such as the UK—s Genomics England and the U.S. NIH—s All of Us Program are actively embedding AI models to enhance the usability of genomic health information and ensure its equitable access. These programs directly stimulate the demand for advanced AI genomics tools from both the public and the private sectors.

High Data Complexity and Skill Gaps in Bioinformatics Pose Scalability Challenges

While the market is witnessing unprecedented growth, a major bottleneck is the shortage of AI-skilled genomic data scientists capable of dealing with the field's technical and ethical complexities. Genomic datasets call for deep domain expertise and highly secure data-handling infrastructure, both of which remain sparse in emerging markets. Moreover, the opacity of AI models (i.e., the black box effect) creates regulatory and interpretative concerns, especially in clinical environments, where explainability is critical.

Attractive Opportunities in the Market

Precision Oncology Revolution – AI-driven genomics enables accurate tumor profiling and therapy matching for personalized treatment regimens.
AI-Powered Rare Disease Diagnosis – Accelerated gene variant classification offers hope for underserved patient populations.
Cloud Genomics Infrastructure – Scalable AI-enabled cloud platforms democratize access to high-performance genomic computing.
Real-Time Sequencing – AI augments edge-based DNA sequencing for rapid diagnostics in clinical settings.
Digital Twin Applications – AI-generated genomic simulations help predict therapeutic response and disease progression.
Collaborative AI Ecosystems – Tech-biotech partnerships fuel innovation in AI-guided bioinformatics tools.
Genomic Data Monetization – AI platforms unlock commercial value from anonymized population genomic repositories.
Cross-Border Data Regulation – Harmonized AI and genomic data governance frameworks expand global reach.

Report Segmentation

By Component:
Hardware, Software

By Technology: Machine Learning

By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)

Key Market Players

NVIDIA Corporation, IBM Watson Health, Microsoft Genomics, Deep Genomics, Illumina, Inc., Google DeepMind, Thermo Fisher Scientific, PathAI, SOPHiA GENETICS, and BenevolentAI.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025-2035
Report Pages: 293

Dominating Segments

Software Segment Dominates AI in Genomics Market with Increasing Adoption of Cloud and Data Analytics

Currently, the software segment has a commanding lead in the market share on account of the increased demand for AI-based bioinformatics tools, deep learning platforms, and predictive modeling systems. Organizations have been deploying custom genomic software suites to facilitate data annotation, phenotype-genotype correlation, and patient stratification. In this context, cloud-native software-as-a-service (SaaS) offerings allow real-time remote access to high-throughput data analyses, empowering healthcare institutions to scale their genomic workflows without investing in on-premise infrastructure.

Machine Learning Has Become the Disruptive Innovation in AI-Powered Genomic Applications

Machine Learning has established itself as the key technology for the interpretation of complex genomic datasets. From variant calling and functional annotation to disease prediction and CRISPR optimization, ML models are redefining what can be done in genomics. Increasingly, algorithms are trained on multi-omics datasets, which allow a more comprehensive understanding of human biology. Deep learning frameworks have begun to demonstrate improved performance over classical statistical techniques relating to speed and accuracy in addressing genomics use cases.

Hardware Solutions Thriving With Edge AI Sequencing Systems and Genomic Compute Engine

While software still leads, alongside its rapid advancement, the hardware segment is witnessing the emergence of specific genomic processors, GPUs, and sequencing edge devices. Custom hardware enhances AI computation tasks at the point of care, enabling real-time base calling, sequence alignment, and data encryption. With genomic diagnostics shifting from central laboratories to clinical applications, demand for small, AI-optimized hardware is expected to soar.

Key Takeaways

AI-Genomics Synergy – Growing adoption of machine learning is unlocking actionable insights from complex genomic data.
Software Dominance – AI-powered SaaS platforms streamline variant analysis and real-time patient genomics reporting.
Machine Learning Leads – Predictive modeling transforms drug discovery, disease diagnostics, and personalized therapy.
Infrastructure Innovation – AI-specific genomic hardware speeds up sequencing and clinical interpretation workflows.
R&D Acceleration – Pharma and biotech leverage AI-genomics to reduce discovery timelines and optimize pipelines.
Precision Medicine Expansion – AI models enhance diagnostic accuracy and risk stratification in hereditary diseases.
Global Genomic Initiatives – National projects stimulate the adoption of AI tools in large-scale population studies.
Cloud Genomics Growth – LIMS, analytics, and visualization tools shift toward AI-enabled cloud ecosystems.
Asia-Pacific Momentum – Regional investments and biotech growth drive the fastest CAGR in AI-genomics platforms.
Data Ethics & Governance – Evolving frameworks regulate cross-border AI applications in genomics healthcare.

Regional Insights

North America Leads Global AI in Genomics Adoption Due to Strong Infrastructure and R&D Activity

North America remains the head of the pack in AI in genomics, being powered by leading companies, advanced healthcare infrastructure, and a great deal of research funding. Technology firms based in the United States, as well as research hospitals, spearhead the application of AI in bioinformatics, which is followed by the availability of large-scale genomic databases as well as state-of-the-art cloud platforms. A mature ecosystem of genomic diagnostics and personalized medicine programs in the region activates the use of AI to develop treatment outcomes.

Europe Ramps Up Precision Medicine with AI-Focused National Genomics Initiatives and Regulatory Clarity

For instance, through enormous investments in AI-led genomic diagnostics, European countries such as the UK, Germany, and Switzerland are also benefiting from these. With their clear GDPR frameworks and a focus on ethical AI, Europe enjoys a uniquely strong position to position itself in regulated, patient-centric, genomics research. Public-private partnerships and government grants will help regional tech-bio companies come up with high-impact AI tools tailored for rare diseases and cancer genomics.

Asia-Pacific Fastest-Growing Region Amid Digitization of Healthcare and Investments in Genomics

It is forecast that Asia-Pacific will have the highest growth rate over the five years ending 2021 due to the rapid improvement of genomic sequencing capabilities in countries such as China, India, and South Korea. As incentives for innovation in biotechnology and digital transformation of health continue, so does the demand for genomic analytics powered by AI. Growing clinical trial activities, coupled with decreasing sequencing costs and evolving startup ecosystems, are the factors that shape the fertile grounds for AI-genomics fusion.

Latin America and the Middle East & Africa Start Genomic Infrastructure Modernization Tasks through Targeted AI Deployment

Emerging, Latin America, and MEA are making initial signs of AI adoption in genomics through pilot and International collaborations. These regions engage in genomics involving infectious pathogens on public health surveillance and non-communicable diseases detection, often engaging global AI solution providers to build capacity in these areas. While scaling may be slow, there is great long-term potential as improvements in digital health literacy and cloud connectivity occur.

Core Strategic Questions Answered in This Report

Q. What is the expected growth trajectory of artificial intelligence in the genomics market from 2024 to 2035?

The global artificial intelligence in genomics market is forecast to skyrocket from USD 1,040.01 million in 2024 to USD 66,821.92 million by 2035, reflecting a robust CAGR of 46.0%. This remarkable growth is primarily fueled by rising demand for precision medicine, scalable genomic analytics, and predictive modeling in therapeutic development and diagnostics.

Q. Which key factors are fuelling the growth of artificial intelligence in the genomics market?

Several pivotal factors are propelling market expansion:
The proliferation of AI algorithms in gene sequencing and disease prediction workflows.
Rapid adoption of machine learning in drug discovery and clinical decision-making.
Government-led genomic mapping initiatives with AI-integrated analytics platforms.
Cloud-based genomic data infrastructure enabling real-time, remote access.
Growing focus on rare and hereditary disease diagnostics through AI-genomics tools.
Emergence of hybrid models combining radiomics, genomics, and clinical data.

Q. What are the primary challenges hindering the growth of artificial intelligence in the genomics market?

Key challenges slowing market growth include:

Scarcity of AI-bioinformatics specialists in emerging markets.
Data privacy, ethical compliance, and regulatory uncertainty around AI model transparency.
High infrastructure cost for deploying AI-based sequencing and diagnostics platforms.
Limited interoperability across genomic data silos and EHR systems.
Difficulty in achieving model validation and reproducibility across diverse patient datasets.

Q. Which regions currently lead the artificial intelligence in genomics market in terms of market share?

North America currently dominates the market, driven by extensive R&D investments, strong tech-health integration, and widespread clinical application of AI-genomic platforms. Europe follows, bolstered by ethical AI regulations and national precision medicine projects.

Q. What emerging opportunities are anticipated in the artificial intelligence in genomics market?

Emerging opportunities include:

Development of AI-driven polygenic risk scoring and predictive health tools.
Expansion of digital twins for disease modeling and treatment planning.
Integration of AI in real-time sequencing and rapid diagnostics.
Rise of AI-based drug target discovery in rare and neglected diseases.
AI-enhanced multi-omics platforms for complex disease understanding and intervention.

Key Benefits for Stakeholders

The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter's Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.

Table of Contents

285 Pages
Chapter 1. Market Snapshot
1.1. Market Definition & Report Overview
1.2. Market Segmentation
1.3. Key Takeaways
1.3.1. Top Investment Pockets
1.3.2. Top Winning Strategies
1.3.3. Market Indicators Analysis
1.3.4. Top Impacting Factors
1.4. Technology Ecosystem Analysis
1.4.1. 360’ Analysis
Chapter 2. Executive Summary
2.1. CEO/CXO Standpoint
2.2. Strategic Insights
2.3. ESG Analysis
2.4 Market Attractiveness Analysis (top leader’s point of view on market)
2.5.key Findings
Chapter 3. Research Methodology
3.1 Research Objective
3.2 Supply Side Analysis
3.1.1. Primary Research
3.1.2. Secondary Research
3.3 Demand Side Analysis
3.1.3. Primary Research
3.1.4. Secondary Research
3.2. Forecasting Models
3.2.1. Assumptions
3.2.2. Forecasts Parameters ()
3.3. Competitive breakdown
3.3.1. Market Positioning
3.3.2. Competitive Strength
3.4. Scope of the Study
3.4.1. Research Assumption
3.4.2. Inclusion & Exclusion
3.4.3. Limitations
Chapter 4. Chapter 4. Technology Landscape
4.1. Market Dynamics
4.1.1. Drivers
4.1.2. Restraints
4.1.3. Opportunities
4.2. Porter’s 5 Forces Model
4.2.1. Bargaining Power of Buyer
4.2.2. Bargaining Power of Supplier
4.2.3. Threat of New Entrants
4.2.4. Threat of Substitutes
4.2.5. Competitive Rivalry
4.3. Value Chain Analysis
4.4. PESTEL Analysis
4.5. Pricing Analysis and Trends
4.6. Key growth factors and trends analysis
4.7. Market Share Analysis (2025)
4.8. Top Winning Strategies (2025)
4.9. Trade Data Analysis (Import Export)
4.10. Regulatory Guidelines
4.11. Historical Data Analysis
4.12. Analyst Recommendation & Conclusion
Chapter 5. Global Artificial Intelligence in Genomics Market Size & Forecasts by Component 2025-2035
5.1. Market Overview
5.1.1. Market Size and Forecast By Component 2025-2035
5.2. Hardware
5.2.1. Market definition, current market trends, growth factors, and opportunities
5.2.2. Market size analysis, by region, 2025-2035
5.2.3. Market share analysis, by country, 2025-2035
5.3. Software
5.3.1. Market definition, current market trends, growth factors, and opportunities
5.3.2. Market size analysis, by region, 2025-2035
5.3.3. Market share analysis, by country, 2025-2035
Chapter 6. Global Artificial Intelligence in Genomics Market Size & Forecasts by Technology 2025–2035
5.1. Market Overview
6.1.1. Market Size and Forecast By Component 2025-2035
6.2. Machine Learning
6.2.1. Market definition, current market trends, growth factors, and opportunities
6.2.2. Market size analysis, by region, 2025-2035
6.2.3. Market share analysis, by country, 2025-2035
Chapter 7. Global Artificial Intelligence in Genomics Market Size & Forecasts by Region 2025–2035
7.1. Regional Overview 2025-2035
7.2. Top Leading and Emerging Nations
7.3. North America Artificial Intelligence in Genomics Market
7.3.1. U.S. Artificial Intelligence in Genomics Market
7.3.1.1. Component breakdown size & forecasts, 2025-2035
7.3.1.2. Technology breakdown size & forecasts, 2025-2035
7.3.2. Canada Artificial Intelligence in Genomics Market
7.3.2.1. Component breakdown size & forecasts, 2025-2035
7.3.2.2. Technology breakdown size & forecasts, 2025-2035
7.3.3. Mexico Artificial Intelligence in Genomics Market
7.3.3.1. Component breakdown size & forecasts, 2025-2035
7.3.3.2. Technology breakdown size & forecasts, 2025-2035
7.4. Europe Artificial Intelligence in Genomics Market
7.4.1. UK Artificial Intelligence in Genomics Market
7.4.1.1. Component breakdown size & forecasts, 2025-2035
7.4.1.2. Technology breakdown size & forecasts, 2025-2035
7.4.2. Germany Artificial Intelligence in Genomics Market
7.4.2.1. Component breakdown size & forecasts, 2025-2035
7.4.2.2. Technology breakdown size & forecasts, 2025-2035
7.4.3. France Artificial Intelligence in Genomics Market
7.4.3.1. Component breakdown size & forecasts, 2025-2035
7.4.3.2. Technology breakdown size & forecasts, 2025-2035
7.4.4. Spain Artificial Intelligence in Genomics Market
7.4.4.1. Component breakdown size & forecasts, 2025-2035
7.4.4.2. Technology breakdown size & forecasts, 2025-2035
7.4.5. Italy Artificial Intelligence in Genomics Market
7.4.5.1. Component breakdown size & forecasts, 2025-2035
7.4.5.2. Technology breakdown size & forecasts, 2025-2035
7.4.6. Rest of Europe Artificial Intelligence in Genomics Market
7.4.6.1. Component breakdown size & forecasts, 2025-2035
7.4.6.2. Technology breakdown size & forecasts, 2025-2035
7.5. Asia Pacific Artificial Intelligence in Genomics Market
7.5.1. China Artificial Intelligence in Genomics Market
7.5.1.1. Component breakdown size & forecasts, 2025-2035
7.5.1.2. Technology breakdown size & forecasts, 2025-2035
7.5.2. India Artificial Intelligence in Genomics Market
7.5.2.1. Component breakdown size & forecasts, 2025-2035
7.5.2.2. Technology breakdown size & forecasts, 2025-2035
7.5.3. Japan Artificial Intelligence in Genomics Market
7.5.3.1. Component breakdown size & forecasts, 2025-2035
7.5.3.2. Technology breakdown size & forecasts, 2025-2035
7.5.4. Australia Artificial Intelligence in Genomics Market
7.5.4.1. Component breakdown size & forecasts, 2025-2035
7.5.4.2. Technology breakdown size & forecasts, 2025-2035
7.5.5. South Korea Artificial Intelligence in Genomics Market
7.5.5.1. Component breakdown size & forecasts, 2025-2035
7.5.5.2. Technology breakdown size & forecasts, 2025-2035
7.5.6. Rest of APAC Artificial Intelligence in Genomics Market
7.5.6.1. Component breakdown size & forecasts, 2025-2035
7.5.6.2. Technology breakdown size & forecasts, 2025-2035
7.6. LAMEA Artificial Intelligence in Genomics Market
7.6.1. Brazil Artificial Intelligence in Genomics Market
7.6.1.1. Component breakdown size & forecasts, 2025-2035
7.6.1.2. Technology breakdown size & forecasts, 2025-2035
7.6.2. Argentina Artificial Intelligence in Genomics Market
7.6.2.1. Component breakdown size & forecasts, 2025-2035
7.6.2.2. Technology breakdown size & forecasts, 2025-2035
7.6.3. UAE Artificial Intelligence in Genomics Market
7.6.3.1. Component breakdown size & forecasts, 2025-2035
7.6.3.2. Technology breakdown size & forecasts, 2025-2035
7.6.4. Saudi Arabia (KSA Artificial Intelligence in Genomics Market
7.6.4.1. Component breakdown size & forecasts, 2025-2035
7.6.4.2. Technology breakdown size & forecasts, 2025-2035
7.6.5. Africa Artificial Intelligence in Genomics Market
7.6.5.1. Component breakdown size & forecasts, 2025-2035
7.6.5.2. Technology breakdown size & forecasts, 2025-2035
7.6.6. Rest of LAMEA Artificial Intelligence in Genomics Market
7.6.6.1. Component breakdown size & forecasts, 2025-2035
7.6.6.2. Technology breakdown size & forecasts, 2025-2035
Chapter 8. Company Profiles
8.1. Top Market Strategies
8.2. Company Profiles
8.2.1. NVIDIA Corporation
8.2.1.1. Company Overview
8.2.1.2. Key Executives
8.2.1.3. Company Snapshot
8.2.1.4. Financial Performance (Subject to Data Availability)
8.2.1.5. Product/Services Port
8.2.1.6. Recent Development
8.2.1.7. Market Strategies
8.2.1.8. SWOT Analysis
8.2.2. IBM Watson Health
8.2.3. Microsoft Genomics
8.2.4. Deep Genomics
8.2.5. Illumina, Inc.
8.2.6. Google DeepMind
8.2.7. Thermo Fisher Scientific
8.2.8. PathAI
8.2.9. SOPHiA GENETICS
8.2.10. BenevolentAI
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.