Report cover image

Global Artificial Intelligence Chip Market Size, Trend & Opportunity Analysis Report, by Type (GPU, ASIC, FPGA, CPU), Application (Electronics, Automotive, Consumer Goods), and Forecast, 2025–2035

Published Aug 09, 2025
Length 285 Pages
SKU # KAIS20696890

Description

Market Definition and Introduction

The global artificial intelligence (AI) chip market, valued at USD 14.40 billion in 2024, is projected to skyrocket to USD 459.50 billion by 2035, expanding at a phenomenal CAGR of 37.00% during the forecast period (2025–2035). As AI-powered systems continue to infiltrate every facet of modern industry—from autonomous vehicles and advanced robotics to predictive analytics and intelligent consumer devices—the demand for high-performance AI chips capable of executing complex computations at unprecedented speeds has reached historic highs. These specialized processors form the beating heart of machine learning algorithms, enabling ultra-fast data processing, real-time decision-making, and the efficient handling of massive datasets in diverse sectors, including healthcare, finance, manufacturing, and defense.

The evolution of AI chip architectures—whether GPU-driven parallel processing for deep learning, ASIC-based low-power efficiency for embedded AI, or FPGA-configured reprogrammability—has catalyzed innovation across industries. As global enterprises transition towards Industry 4.0 ecosystems, the need for AI-optimized silicon has become not merely a competitive advantage but a survival imperative. This surge in adoption is further fueled by exponential growth in cloud computing platforms, edge AI deployments, and IoT connectivity, all of which demand hardware accelerators designed specifically to handle AI workloads with minimal latency.

On the supply side, chip manufacturers are investing heavily in advanced fabrication technologies, neural network optimization, and hybrid architecture designs to deliver processors that balance computational throughput with power efficiency. The widespread integration of AI into automotive safety systems, intelligent consumer devices, and industrial automation workflows is creating unprecedented pressure on supply chains, accelerating collaborative ventures between semiconductor giants, cloud service providers, and AI software developers. This deep integration of AI hardware and software ecosystems is poised to reshape global technology infrastructures for decades to come.

Recent Developments in the Industry

In June 2024, NVIDIA Corporation unveiled the GPU architecture called Blackwell for its next-generation applications.

According to company sources, adoption of this architecture will improve AI training and inference for the data center and edge deployments, thus entering new industry benchmarks on parallel processing capabilities.

In March 2024, AMD finalized the purchase of Nod.ai.

AMD-acquisition of Nod.ai, an artificial intelligence software startup, has finalized, which is expected to support the company's efforts on open-source artificial intelligence software and workloads optimization on its AI chip portfolio. This acquisition will ultimately ensure better efficiency in machine learning applications.

That was how Intel Corporation announced in January 2024 the release of its Gaudi 3 AI accelerator.

In January 2024, Intel announced the new Gaudi 3 AI accelerator to its product lines, designed for greater performance-per-watt efficiency in deep learning training workloads targeting the enterprise and hyperscale AI computing markets.

Market Dynamics

Such high demand for AI chips has never been witnessed before.

AI systems are now present in every conceivable business endeavor, from autonomous vehicles and robots to predictive analytics and intelligent consumer devices. These CPUs have become the heart and soul of machine learning algorithms, executing data processing at lightning speed in real-time while being able to handle huge quantities of data in sectors as varied as healthcare, finance, manufacturing, and defense.

Much of the chip architecture evolution behind AI is GPU-based parallel processing for deep learning.

ASIC-based low power efficiency for embedded AI, or FPGA-enabled reprogrammability, has spurred innovation in every industry. With enterprises over the globe progressing toward Industry 4.0 ecosystems, such optimized silicon has turned from being a competitive edge into a question of survival. This adoption is further augmented by the exponential growth of cloud computing platforms, edge AI use cases, and IoT connectivity—all demanding hardware accelerators specifically built to handle AI workloads with the minimum possible latency.

If one looks into the supply chain, chip makers are going all out in advanced fabrication technologies, neural network optimization, and hybrid architecture designs to deliver processors that achieve a good balance between computation throughput and power efficiency.

AI is penetrating automotive safety systems, intelligent consumer devices, and industrial automation workflows, putting unprecedented pressure on supply chains and accelerating alliances between semiconductor titans, cloud service providers, and AI software vendors. This deep integration of AI hardware and software ecosystems is likely to change the global technology infrastructure for decades to come.

Attractive Opportunities in the Market

Surge in Edge AI Deployments – Low-power chips enabling real-time processing at the device level.
Generative AI Momentum – Next-gen GPUs and ASICs designed for large language model acceleration.
Automotive AI Integration – Chips powering autonomous driving and advanced driver-assistance systems (ADAS).
5G & AI Convergence – Enhanced AI chip capabilities for ultra-fast data throughput in telecom infrastructure.
Hybrid Architecture Development – Combining CPU, GPU, FPGA, and ASIC strengths in unified packages.
AI in Consumer Electronics – Growing use in smartphones, wearables, and smart home devices.
Defense & Security AI – Chips enabling real-time surveillance and threat detection systems.
Sustainable Chip Design – Energy-efficient architectures meeting environmental regulations.

Report Segmentation

By Type: GPU, ASIC, FPGA, CPU

By Application: Electronics, Automotive, Consumer Goods

By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)

Key Market Players

NVIDIA Corporation, Advanced Micro Devices Inc. (AMD), Intel Corporation, Qualcomm Technologies Inc., Alphabet Inc. (Google), Apple Inc., Xilinx Inc., IBM Corporation, Graphcore Limited, Samsung Electronics Co., Ltd.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025–2035
Report Pages: 293

Dominating Segments

The GPU segment remains the foundation of AI chip demand due to its unmatched ability to perform.

Massive parallel computations are required for training and inference in deep learning models. These architectures are gaining acceptance across cloud platforms, research institutions, and enterprise AI deployments, as complexity and adoption of generative AI models increase.

ASIC Segment Gains Traction as Industry Seeks Ultra-Efficient, Task-Specific AI Processing

Application-Specific Integrated Circuits (ASICs) are being rapidly integrated for AI applications where power efficiency and speed are of utmost importance, such as autonomous driving, natural language processing, and edge AI devices. ASIC shows better performance-per-watt efficiency as compared to the general-purpose processors, as the architecture of the chip is specifically targeted at various AI tasks.

FPGA and CPU Segments Evolve to Serve Specialized AI Processing Needs

Field-Programmable Gate Arrays (FPGAs) still serve markets requiring reconfigurable AI acceleration, especially telecommunications and industrial automation segments. As for CPUs, they remain extremely important in hybrid processing workloads, where AI operations are orchestrated in concert with GPUs, ASICs, and FPGAs within the same computing platforms.

Key Takeaways

Generative AI Drives Demand – GPUs remain dominant for training and deploying large-scale AI models.
ASIC Adoption Surges – Industry shifts towards application-specific, energy-efficient AI processing solutions.
Edge AI Gains Momentum – Low-latency chips enable real-time AI applications across sectors.
Hybrid Architectures Rise – CPU, GPU, FPGA, and ASIC integration delivers optimal AI performance.
Automotive AI Growth – Chips power autonomous driving and advanced safety systems.
AI Cloud Synergy – Hyperscalers deploy custom accelerators for cost-efficient AI scaling.
5G-Enabled AI – AI chips enhance ultra-fast processing in telecom infrastructure.
Asia-Pacific Expansion – Regional production capacity fuels chip supply resilience.
Defense AI Adoption – Real-time analytics boost national security applications.
Sustainable Design Focus – Energy-efficient AI chips align with ESG goals.

Regional Insights

With a hefty array of innovations and infrastructure, North America leads the globe in the artificial intelligence chip market. It is the U.S. that shores up North American strength in AI chip development as home to the industry's giants—NVIDIA, AMD, and Intel. Highly developed R&D ecosystems with real capital investment and strong integration into the cloud hyperscalers form the competitive advantage of the region.

In Europe, strong market positions are garnered through strategic partnerships and green semiconductor initiatives.

Countries such as Germany, France, and the U.K. improve AI chip manufacturing through public-private partnerships and solicit the environmentally friendly production of semiconductors alongside the advanced integration of AI in the automobile and industrial sectors.

Asia Pacific is set to explode in the growth of production and deployment of AI chips.

China, Taiwan, South Korea, and Japan are under extremely fast-track development towards AI chip manufacturing backed by government support, extending 5G networks, and the blooming of domestic AI startups. In the coming decade, the region is expected to become both a major AI chip producer and consumer.

Latin America and the Middle East-African gradual AI hardware integration.

Though still in the early phases of adoption, these regions are investing in AI infrastructure for smart cities, surveillance, and industrial modernization, while creating the long-term growth opportunities that chip makers need to target emerging markets.

Core Strategic Questions Answered in This Report

Q. What is the expected growth trajectory of the artificial intelligence chip market from 2024 to 2035?

The global artificial intelligence chip market is projected to grow from USD 14.40 billion in 2024 to USD 459.50 billion by 2035, reflecting a CAGR of 37.00% over the forecast period (2025–2035). This remarkable expansion is driven by rapid advancements in AI workloads, integration into autonomous systems, and rising demand for low-latency edge AI processing.

Q. Which key factors are fuelling the growth of the artificial intelligence chip market?

Several key factors are propelling market growth:

Proliferation of AI-powered applications in automotive, electronics, and consumer goods.
Accelerated adoption of generative AI and deep learning workloads.
Growing demand for edge AI deployments with ultra-low latency.
Advancements in semiconductor fabrication technologies.
Integration of AI chips into 5G infrastructure and IoT devices.
Strategic alliances between chipmakers and cloud service providers.

Q. What are the primary challenges hindering the growth of the artificial intelligence chip market?

Major challenges include:

High capital expenditure in AI chip design and fabrication.
Global semiconductor supply chain vulnerabilities.
Rapid obsolescence of chip architectures due to fast AI evolution.
Energy consumption and thermal management in high-performance AI chips.
Shortage of skilled professionals in AI hardware engineering.

Q. Which regions currently lead the artificial intelligence chip market in terms of market share?

North America leads the market, driven by strong innovation ecosystems, leading semiconductor manufacturers, and advanced AI infrastructure. Europe follows closely with sustainable semiconductor strategies, while Asia-Pacific is rapidly emerging as the fastest-growing production hub.

Q. What emerging opportunities are anticipated in the artificial intelligence chip market?

The market is poised for new opportunities, including:

Generative AI model acceleration with next-gen GPUs.
AI integration in autonomous vehicles and robotics.
Energy-efficient chip designs for sustainable computing.
Custom AI accelerators for telecom and 5G networks.
Edge AI deployments in healthcare, industrial automation, and smart cities.
Hybrid architectures combining multiple processing units for optimized workloads.

Key Benefits for Stakeholders

The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter's Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.

Table of Contents

285 Pages
Chapter 1. Market Snapshot
1.1. Market Definition & Report Overview
1.2. Market Segmentation
1.3. Key Takeaways
1.3.1. Top Investment Pockets
1.3.2. Top Winning Strategies
1.3.3. Market Indicators Analysis
1.3.4. Top Impacting Factors
1.4. Application Ecosystem Analysis
1.4.1. 360’ Analysis
Chapter 2. Executive Summary
2.1. CEO/CXO Standpoint
2.2. Strategic Insights
2.3. ESG Analysis
2.4 Market Attractiveness Analysis (top leader’s point of view on market)
2.5.key Findings
Chapter 3. Research Methodology
3.1 Research Objective
3.2 Supply Side Analysis
3.1.1. Primary Research
3.1.2. Secondary Research
3.3 Demand Side Analysis
3.1.3. Primary Research
3.1.4. Secondary Research
3.2. Forecasting Models
3.2.1. Assumptions
3.2.2. Forecasts Parameters ()
3.3. Competitive breakdown
3.3.1. Market Positioning
3.3.2. Competitive Strength
3.4. Scope of the Study
3.4.1. Research Assumption
3.4.2. Inclusion & Exclusion
3.4.3. Limitations
Chapter 4. Chapter 4. Application Landscape
4.1. Market Dynamics
4.1.1. Drivers
4.1.2. Restraints
4.1.3. Opportunities
4.2. Porter’s 5 Forces Model
4.2.1. Bargaining Power of Buyer
4.2.2. Bargaining Power of Supplier
4.2.3. Threat of New Entrants
4.2.4. Threat of Substitutes
4.2.5. Competitive Rivalry
4.3. Value Chain Analysis
4.4. PESTEL Analysis
4.5. Pricing Analysis and Trends
4.6. Key growth factors and trends analysis
4.7. Market Share Analysis (2025)
4.8. Top Winning Strategies (2025)
4.9. Trade Data Analysis (Import Export)
4.10. Regulatory Guidelines
4.11. Historical Data Analysis
4.12. Analyst Recommendation & Conclusion
Chapter 5. Global Artificial Intelligence Chip Market Size & Forecasts by Type 2025-2035
5.1. Market Overview
5.1.1. Market Size and Forecast By Type 2025-2035
5.2. GPU
5.2.1. Market definition, current market trends, growth factors, and opportunities
5.2.2. Market size analysis, by region, 2025-2035
5.2.3. Market share analysis, by country, 2025-2035
5.3. ASIC
5.3.1. Market definition, current market trends, growth factors, and opportunities
5.3.2. Market size analysis, by region, 2025-2035
5.3.3. Market share analysis, by country, 2025-2035
5.4. FPGA
5.4.1. Market definition, current market trends, growth factors, and opportunities
5.4.2. Market size analysis, by region, 2025-2035
5.4.3. Market share analysis, by country, 2025-2035
5.5. CPU
5.5.1. Market definition, current market trends, growth factors, and opportunities
5.5.2. Market size analysis, by region, 2025-2035
5.5.3. Market share analysis, by country, 2025-2035
Chapter 6. Global Artificial Intelligence Chip Market Size & Forecasts by Application 2025–2035
5.1. Market Overview
6.1.1. Market Size and Forecast By Type 2025-2035
6.2. Electronics
6.2.1. Market definition, current market trends, growth factors, and opportunities
6.2.2. Market size analysis, by region, 2025-2035
6.2.3. Market share analysis, by country, 2025-2035
6.3. Automotive
6.3.1. Market definition, current market trends, growth factors, and opportunities
6.3.2. Market size analysis, by region, 2025-2035
6.3.3. Market share analysis, by country, 2025-2035
6.4. Consumer Goods
6.4.1. Market definition, current market trends, growth factors, and opportunities
6.4.2. Market size analysis, by region, 2025-2035
6.4.3. Market share analysis, by country, 2025-2035
Chapter 7. Global Artificial Intelligence Chip Market Size & Forecasts by Region 2025–2035
7.1. Regional Overview 2025-2035
7.2. Top Leading and Emerging Nations
7.3. North America Artificial Intelligence Chip Market
7.3.1. U.S. Artificial Intelligence Chip Market
7.3.1.1. Type breakdown size & forecasts, 2025-2035
7.3.1.2. Application breakdown size & forecasts, 2025-2035
7.3.2. Canada Artificial Intelligence Chip Market
7.3.2.1. Type breakdown size & forecasts, 2025-2035
7.3.2.2. Application breakdown size & forecasts, 2025-2035
7.3.3. Mexico Artificial Intelligence Chip Market
7.3.3.1. Type breakdown size & forecasts, 2025-2035
7.3.3.2. Application breakdown size & forecasts, 2025-2035
7.4. Europe Artificial Intelligence Chip Market
7.4.1. UK Artificial Intelligence Chip Market
7.4.1.1. Type breakdown size & forecasts, 2025-2035
7.4.1.2. Application breakdown size & forecasts, 2025-2035
7.4.2. Germany Artificial Intelligence Chip Market
7.4.2.1. Type breakdown size & forecasts, 2025-2035
7.4.2.2. Application breakdown size & forecasts, 2025-2035
7.4.3. France Artificial Intelligence Chip Market
7.4.3.1. Type breakdown size & forecasts, 2025-2035
7.4.3.2. Application breakdown size & forecasts, 2025-2035
7.4.4. Spain Artificial Intelligence Chip Market
7.4.4.1. Type breakdown size & forecasts, 2025-2035
7.4.4.2. Application breakdown size & forecasts, 2025-2035
7.4.5. Italy Artificial Intelligence Chip Market
7.4.5.1. Type breakdown size & forecasts, 2025-2035
7.4.5.2. Application breakdown size & forecasts, 2025-2035
7.4.6. Rest of Europe Artificial Intelligence Chip Market
7.4.6.1. Type breakdown size & forecasts, 2025-2035
7.4.6.2. Application breakdown size & forecasts, 2025-2035
7.5. Asia Pacific Artificial Intelligence Chip Market
7.5.1. China Artificial Intelligence Chip Market
7.5.1.1. Type breakdown size & forecasts, 2025-2035
7.5.1.2. Application breakdown size & forecasts, 2025-2035
7.5.2. India Artificial Intelligence Chip Market
7.5.2.1. Type breakdown size & forecasts, 2025-2035
7.5.2.2. Application breakdown size & forecasts, 2025-2035
7.5.3. Japan Artificial Intelligence Chip Market
7.5.3.1. Type breakdown size & forecasts, 2025-2035
7.5.3.2. Application breakdown size & forecasts, 2025-2035
7.5.4. Australia Artificial Intelligence Chip Market
7.5.4.1. Type breakdown size & forecasts, 2025-2035
7.5.4.2. Application breakdown size & forecasts, 2025-2035
7.5.5. South Korea Artificial Intelligence Chip Market
7.5.5.1. Type breakdown size & forecasts, 2025-2035
7.5.5.2. Application breakdown size & forecasts, 2025-2035
7.5.6. Rest of APAC Artificial Intelligence Chip Market
7.5.6.1. Type breakdown size & forecasts, 2025-2035
7.5.6.2. Application breakdown size & forecasts, 2025-2035
7.6. LAMEA Artificial Intelligence Chip Market
7.6.1. Brazil Artificial Intelligence Chip Market
7.6.1.1. Type breakdown size & forecasts, 2025-2035
7.6.1.2. Application breakdown size & forecasts, 2025-2035
7.6.2. Argentina Artificial Intelligence Chip Market
7.6.2.1. Type breakdown size & forecasts, 2025-2035
7.6.2.2. Application breakdown size & forecasts, 2025-2035
7.6.3. UAE Artificial Intelligence Chip Market
7.6.3.1. Type breakdown size & forecasts, 2025-2035
7.6.3.2. Application breakdown size & forecasts, 2025-2035
7.6.4. Saudi Arabia (KSA Artificial Intelligence Chip Market
7.6.4.1. Type breakdown size & forecasts, 2025-2035
7.6.4.2. Application breakdown size & forecasts, 2025-2035
7.6.5. Africa Artificial Intelligence Chip Market
7.6.5.1. Type breakdown size & forecasts, 2025-2035
7.6.5.2. Application breakdown size & forecasts, 2025-2035
7.6.6. Rest of LAMEA Artificial Intelligence Chip Market
7.6.6.1. Type breakdown size & forecasts, 2025-2035
7.6.6.2. Application breakdown size & forecasts, 2025-2035
Chapter 8. Company Profiles
8.1. Top Market Strategies
8.2. Company Profiles
8.2.1. NVIDIA Corporation
8.2.1.1. Company Overview
8.2.1.2. Key Executives
8.2.1.3. Company Snapshot
8.2.1.4. Financial Performance (Subject to Data Availability)
8.2.1.5. Product/Services Port
8.2.1.6. Recent Development
8.2.1.7. Market Strategies
8.2.1.8. SWOT Analysis
8.2.2. Advanced Micro Devices Inc. (AMD)
8.2.3. Intel Corporation
8.2.4. Qualcomm Technologies Inc.
8.2.5. Alphabet Inc. (Google)
8.2.6. Apple Inc.
8.2.7. Xilinx Inc.
8.2.8. IBM Corporation
8.2.9. Graphcore Limited
8.2.10. Samsung Electronics Co., Ltd.
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.