Global Artificial Intelligence (AI) in Medical Imaging Market Size, Trend & Opportunity Analysis Report, by Technology (Deep Learning, NLP, Others), Application (Neurology, Orthopedics, Respiratory and Pulmonary, Cardiology, Breast Screening, Others), End
Description
Market Definition and Introduction
The AI in medical imaging market across the globe was valued at approximately USD 1.36 billion in the year 2024 and is expected to reach about USD 36.32 billion by 2035, growing at a rate of CAGR 34.8% during the forecast period (2025-2035). Basically, with a continuous increase in imaging volumes and workload on radiologists, it is becoming ever more mission-critical for an AI tool that can flag anomalies, prioritize cases, and augment clinician workflows. These tools employ convolutional neural networks and transformer-based architectures for lesion detection, quantifying change over time, and aiding in differential diagnoses with a rate and consistency not achievable by human readers alone.
Healthcare institutions are implementing AI for the neurology imaging fields of stroke and dementia evaluation, while orthopedic applications leverage AI for bone fracture detection and joint space analysis. Now, CT and MRI modalities benefit from automated segmentation, while AI in X-ray suites is used for rapid chest screening, and ultrasound scans use AI pattern recognition to enhance fetal and abdominal imaging. AI applications for nuclear imaging systems will also enhance the quantification of tracer uptake and streamline workflows for PET/CT.
Transformation is driven by strategic partnerships between medical device manufacturers, imaging software companies, and academic research institutions. Investments in federated learning projects, where models are trained across decentralized hospital data without compromising patient privacy, are increasing the robustness of algorithms. Regulatory approvals-from FDA breakthrough device designations to CE markings-are fast-tracking commercialization, while emerging reimbursement models are acknowledging the role of AI in curbing diagnostic errors and improving patient pathways.
Recent Developments in the Industry
In April 2024, the U.S. FDA granted De Novo clearance to Qure.ai’s qER™ deep learning solution for automated detection of intracranial hemorrhages on head CT, enabling seamless integration into emergency radiology workflows.
In February 2024, Zebra Medical Vision launched its AI-powered bone health analytics platform for osteoporosis screening on standard chest X-rays, addressing both neurology and orthopedics applications in a single solution.
In November 2023, GE Healthcare announced collaborations with the Mayo Clinic to validate AI-driven MRI reconstruction algorithms that reduce scan times by up to 50%, enhancing throughput and patient comfort.
Market Dynamics
Demand for AI-driven real-time diagnostic decision support is rapidly gaining traction in high-throughput imaging settings.
Where hospitals' and diagnostic centers' AI will take seconds to help in triaging critical cases for suspected stroke or pulmonary embolism from scan completion. In this way, with automatic detection and prioritization, the burden on clinicians is reduced, and life-threatening conditions come into immediate attention.
Traceable reform regulations and standards for clinical evidence are shaping AI algorithm life cycles.
Vendors are currently negotiating the process of FDA, EMA, and PMDA regulations, carrying out multi-centered validation studies, and market surveillance to demonstrate that their product is safe and effective. Standardized datasets, thorough performance assessments, and continued monitoring of the algorithm have come to be embraced.
Joining AI-enhanced imaging informatics with hospital PACS and electronic health records.
Interconnectivity between AI and PACS is very important. Current solutions integrate seamlessly into radiology workflow by delivering annotated images and structured reports directly to the radiologist's PACS viewer. This greatly reduces the learning curve and expedites adoption.
Management intervention in federated learning networks and synthetic data generation is growing in the quest for providing answers to data privacy and scarcity.
In order to train strong models without having to share sensitive patient data, institutions are rolling out thick federated learning protocols. At the same time, synthetic image generation is complementing datasets for rare pathologies to better generalize the algorithms across demographics and scanner types.
Attractive Opportunities in the Market
AI-Enabled Stroke Detection Platforms – Accelerating neuroimaging workflows for emergent care.
Automated Fracture and Joint Analysis Solutions – Enhancing orthopedic diagnostic accuracy and speed.
Cloud-Based CT and MRI Reconstruction Services – Reducing scan times and optimizing throughput.
AI-Powered Chest X-Ray Screening Tools – Expanding early detection of pneumonia and TB.
Ultrasound Pattern Recognition Systems – Improving fetal and abdominal exam consistency.
PET/CT Quantification and Workflow Automation – Streamlining nuclear imaging interpretation.
Edge AI Deployment in Point-of-Care Devices – Delivering on-device inference for remote settings.
Managed AI Validation and Compliance Services – Supporting regulatory submissions and audits.
Integration of AI with Radiology Information Systems – Embedding insights into clinician workflows.
Partnership Models between OEMs and Healthcare Providers – Co-developing tailored AI imaging solutions.
Report Segmentation
By Technology: Deep Learning, Natural Language Processing, Others
By Application: Neurology, Orthopaedics, Respiratory and Pulmonary, Cardiology, Breast Screening, Others
By End Use: Hospitals, Diagnostic Centres, Others
By Modalities: CT Scan, MRI, X-rays, Ultrasound, Nuclear Imaging
By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)
Key Market Players: IBM Watson Health, Google Health, Siemens Healthiness, GE Healthcare, Philips Healthcare, Aidoo, Zebra Medical Vision, Butterfly Network, Caption Health, Tempus Labs
Report Aspects
Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025–2035
Report Pages: 293
Dominating Segments
Neurological imaging is the application market. Demand for such applications has risen sharply due to the need for accurate AI for diagnostics.
Hospital-based systems are gradually using AI for acute neurological events and early diagnosis of hemorrhages, infarcts, and dementia biomarkers in stroke units and neuro-ICUs to speed up stroke return times and enhance clinical decision making throughout critical care pathways.
Primary AI end users for advanced image processing across critical care territory hospitals are formed by construction.
Large hospital networks with high patient turnovers are seen as the more prominent adopters, naturally integrating AI applications across three additional settings, i.e., emergencies, inpatients, and outpatients, right ahead of radiology practices, spending on the technology to make speedier report delivery and superior accuracy.
CT and Criminality have more than a fair chance of holding software market shares, but there is also the fastest-growing nuclear imaging market.
AI-based reconstructions of CT and MRI have matured in an era of AI, and they hence bring reliable and robust implantation. The fastest-growing segment consists of nuclear imaging with AI-enabled, e.g., for quantifying tracer and lesion detection in cancer and cardiology.
Key Takeaways
Early Detection Imperative – AI accelerates identification of critical findings across imaging modalities.
Deep Learning Dominance – Convolutional architectures lead to accuracy in complex image interpretation.
Neurology Leadership – Stroke and dementia AI tools drive neurology segment expansion.
Orthopaedics Growth – Fracture and joint analytics foster improved musculoskeletal diagnosis.
Hospital Adoption – Large health systems champion integrated AI workflows.
Diagnostic Centre Differentiation – AI enables rapid triage and reporting to attract referrals.
Modality-Specific Innovation – MRI and CT reconstruction tools reduce scan times.
NLP-Powered Reporting – Automated report generation enhances efficiency and consistency.
Federated Learning Uptake – Privacy-preserving model training across institutions bolsters algorithm robustness.
Strategic Alliances – Collaborations between vendors and providers expedite tailored solution rollouts.
Regional Insights
Investments into research and development and advanced infrastructure in North America, thereof the advanced healthcare system in the country, make it the frontrunner in AI for the medical imaging market.
These include the United States and Canada, which have been built on extensive clinical trials, academic research partnerships, and heavy venture capital investment. Leading AI deployers such as major hospital networks and imaging centres are the ones to set the pace for performance and integration in the sector.
Europe keeps its considerable share using strict data regulations and European-wide AI research consortia.
The federated learning initiatives have been created because of the GDPR mandate, while EU research programs are funding multicenter AI validation studies. Key markets - Germany, France, the UK - are early adopters of AI-enabled radiology and neurology imaging solutions.
Asia-Pacific is ready for fast scaling by national digital health programs and extending the imaging infrastructure.
Heavy investing by China, India, Japan, and South Korea is opening the doors to advanced AI-powered imaging centres and tele-radiology services. Local startup ecosystems and government policies have reinforced the adoption of the digitization of healthcare.
Latin America as the Middle East & Africa now turn towards AI imaging solutions to bridge resource gaps and provide extended access
Pilot projects for AI chest X-ray screening for tuberculosis have been launched in Brazil and Argentina, but GCC countries are adopting AI through the major hospital chains. Cloud-based models of AI will then solve infrastructure deficiencies and enable scalable diagnostics in underserved regions.
Core Strategic Questions Answered in This Report
Q. What is the expected growth trajectory of artificial intelligence in the medical imaging market from 2024 to 2035?
The global AI in medical imaging market is projected to grow from USD 1.36 billion in 2024 to USD 36.32 billion by 2035, reflecting a CAGR of 34.8% over the forecast period (2025–2035). This rapid expansion is driven by the urgent need for workflow automation, early disease detection, and improved diagnostic accuracy across healthcare settings.
Q. Which key factors are fuelling the growth of AI in the medical imaging market?
Several critical factors drive market growth:
Rising prevalence of chronic and acute conditions requiring swift imaging diagnoses.
Advances in deep learning architectures for image reconstruction and lesion detection.
Regulatory approvals and reimbursement pathways for AI-enabled diagnostic tools.
Hospital investments in digital health infrastructure and AI integrations.
Increasing demand for remote and point-of-care imaging capabilities.
Q. What are the primary challenges hindering the growth of AI in the medical imaging market?
Key challenges include:
Data privacy and security concerns surrounding patient imaging data.
The complexity of integrating AI tools with legacy PACS and HIS systems.
Variability in image acquisition protocols across institutions affects algorithm performance.
Clinician resistance due to trust and liability considerations around AI recommendations.
High costs and lengthy timelines for clinical validation and regulatory clearance.
Q. Which regions currently lead the AI in the medical imaging market in terms of market share?
North America leads, driven by advanced digital health ecosystems, strong R&D funding, and early AI adoption by major hospital networks. Europe follows, supported by regulatory frameworks and multi-centre validation initiatives, while Asia-Pacific is the fastest-growing region due to government-backed healthcare digitization efforts.
Q. What emerging opportunities are anticipated in the AI in medical imaging market?
The market landscape is ripe with new opportunities, including:
Expansion of AI-driven point-of-care ultrasound and portable imaging devices.
Integration of multi-modal AI models combining imaging, genomic, and EMR data.
Growth of managed AI services offering turnkey deployment and ongoing support.
Partnerships between AI vendors and telemedicine platforms for remote diagnostics.
Development of AI algorithms for rare disease detection and precision imaging.
Key Benefits for Stakeholders
The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter’s Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.
The AI in medical imaging market across the globe was valued at approximately USD 1.36 billion in the year 2024 and is expected to reach about USD 36.32 billion by 2035, growing at a rate of CAGR 34.8% during the forecast period (2025-2035). Basically, with a continuous increase in imaging volumes and workload on radiologists, it is becoming ever more mission-critical for an AI tool that can flag anomalies, prioritize cases, and augment clinician workflows. These tools employ convolutional neural networks and transformer-based architectures for lesion detection, quantifying change over time, and aiding in differential diagnoses with a rate and consistency not achievable by human readers alone.
Healthcare institutions are implementing AI for the neurology imaging fields of stroke and dementia evaluation, while orthopedic applications leverage AI for bone fracture detection and joint space analysis. Now, CT and MRI modalities benefit from automated segmentation, while AI in X-ray suites is used for rapid chest screening, and ultrasound scans use AI pattern recognition to enhance fetal and abdominal imaging. AI applications for nuclear imaging systems will also enhance the quantification of tracer uptake and streamline workflows for PET/CT.
Transformation is driven by strategic partnerships between medical device manufacturers, imaging software companies, and academic research institutions. Investments in federated learning projects, where models are trained across decentralized hospital data without compromising patient privacy, are increasing the robustness of algorithms. Regulatory approvals-from FDA breakthrough device designations to CE markings-are fast-tracking commercialization, while emerging reimbursement models are acknowledging the role of AI in curbing diagnostic errors and improving patient pathways.
Recent Developments in the Industry
In April 2024, the U.S. FDA granted De Novo clearance to Qure.ai’s qER™ deep learning solution for automated detection of intracranial hemorrhages on head CT, enabling seamless integration into emergency radiology workflows.
In February 2024, Zebra Medical Vision launched its AI-powered bone health analytics platform for osteoporosis screening on standard chest X-rays, addressing both neurology and orthopedics applications in a single solution.
In November 2023, GE Healthcare announced collaborations with the Mayo Clinic to validate AI-driven MRI reconstruction algorithms that reduce scan times by up to 50%, enhancing throughput and patient comfort.
Market Dynamics
Demand for AI-driven real-time diagnostic decision support is rapidly gaining traction in high-throughput imaging settings.
Where hospitals' and diagnostic centers' AI will take seconds to help in triaging critical cases for suspected stroke or pulmonary embolism from scan completion. In this way, with automatic detection and prioritization, the burden on clinicians is reduced, and life-threatening conditions come into immediate attention.
Traceable reform regulations and standards for clinical evidence are shaping AI algorithm life cycles.
Vendors are currently negotiating the process of FDA, EMA, and PMDA regulations, carrying out multi-centered validation studies, and market surveillance to demonstrate that their product is safe and effective. Standardized datasets, thorough performance assessments, and continued monitoring of the algorithm have come to be embraced.
Joining AI-enhanced imaging informatics with hospital PACS and electronic health records.
Interconnectivity between AI and PACS is very important. Current solutions integrate seamlessly into radiology workflow by delivering annotated images and structured reports directly to the radiologist's PACS viewer. This greatly reduces the learning curve and expedites adoption.
Management intervention in federated learning networks and synthetic data generation is growing in the quest for providing answers to data privacy and scarcity.
In order to train strong models without having to share sensitive patient data, institutions are rolling out thick federated learning protocols. At the same time, synthetic image generation is complementing datasets for rare pathologies to better generalize the algorithms across demographics and scanner types.
Attractive Opportunities in the Market
AI-Enabled Stroke Detection Platforms – Accelerating neuroimaging workflows for emergent care.
Automated Fracture and Joint Analysis Solutions – Enhancing orthopedic diagnostic accuracy and speed.
Cloud-Based CT and MRI Reconstruction Services – Reducing scan times and optimizing throughput.
AI-Powered Chest X-Ray Screening Tools – Expanding early detection of pneumonia and TB.
Ultrasound Pattern Recognition Systems – Improving fetal and abdominal exam consistency.
PET/CT Quantification and Workflow Automation – Streamlining nuclear imaging interpretation.
Edge AI Deployment in Point-of-Care Devices – Delivering on-device inference for remote settings.
Managed AI Validation and Compliance Services – Supporting regulatory submissions and audits.
Integration of AI with Radiology Information Systems – Embedding insights into clinician workflows.
Partnership Models between OEMs and Healthcare Providers – Co-developing tailored AI imaging solutions.
Report Segmentation
By Technology: Deep Learning, Natural Language Processing, Others
By Application: Neurology, Orthopaedics, Respiratory and Pulmonary, Cardiology, Breast Screening, Others
By End Use: Hospitals, Diagnostic Centres, Others
By Modalities: CT Scan, MRI, X-rays, Ultrasound, Nuclear Imaging
By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)
Key Market Players: IBM Watson Health, Google Health, Siemens Healthiness, GE Healthcare, Philips Healthcare, Aidoo, Zebra Medical Vision, Butterfly Network, Caption Health, Tempus Labs
Report Aspects
Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025–2035
Report Pages: 293
Dominating Segments
Neurological imaging is the application market. Demand for such applications has risen sharply due to the need for accurate AI for diagnostics.
Hospital-based systems are gradually using AI for acute neurological events and early diagnosis of hemorrhages, infarcts, and dementia biomarkers in stroke units and neuro-ICUs to speed up stroke return times and enhance clinical decision making throughout critical care pathways.
Primary AI end users for advanced image processing across critical care territory hospitals are formed by construction.
Large hospital networks with high patient turnovers are seen as the more prominent adopters, naturally integrating AI applications across three additional settings, i.e., emergencies, inpatients, and outpatients, right ahead of radiology practices, spending on the technology to make speedier report delivery and superior accuracy.
CT and Criminality have more than a fair chance of holding software market shares, but there is also the fastest-growing nuclear imaging market.
AI-based reconstructions of CT and MRI have matured in an era of AI, and they hence bring reliable and robust implantation. The fastest-growing segment consists of nuclear imaging with AI-enabled, e.g., for quantifying tracer and lesion detection in cancer and cardiology.
Key Takeaways
Early Detection Imperative – AI accelerates identification of critical findings across imaging modalities.
Deep Learning Dominance – Convolutional architectures lead to accuracy in complex image interpretation.
Neurology Leadership – Stroke and dementia AI tools drive neurology segment expansion.
Orthopaedics Growth – Fracture and joint analytics foster improved musculoskeletal diagnosis.
Hospital Adoption – Large health systems champion integrated AI workflows.
Diagnostic Centre Differentiation – AI enables rapid triage and reporting to attract referrals.
Modality-Specific Innovation – MRI and CT reconstruction tools reduce scan times.
NLP-Powered Reporting – Automated report generation enhances efficiency and consistency.
Federated Learning Uptake – Privacy-preserving model training across institutions bolsters algorithm robustness.
Strategic Alliances – Collaborations between vendors and providers expedite tailored solution rollouts.
Regional Insights
Investments into research and development and advanced infrastructure in North America, thereof the advanced healthcare system in the country, make it the frontrunner in AI for the medical imaging market.
These include the United States and Canada, which have been built on extensive clinical trials, academic research partnerships, and heavy venture capital investment. Leading AI deployers such as major hospital networks and imaging centres are the ones to set the pace for performance and integration in the sector.
Europe keeps its considerable share using strict data regulations and European-wide AI research consortia.
The federated learning initiatives have been created because of the GDPR mandate, while EU research programs are funding multicenter AI validation studies. Key markets - Germany, France, the UK - are early adopters of AI-enabled radiology and neurology imaging solutions.
Asia-Pacific is ready for fast scaling by national digital health programs and extending the imaging infrastructure.
Heavy investing by China, India, Japan, and South Korea is opening the doors to advanced AI-powered imaging centres and tele-radiology services. Local startup ecosystems and government policies have reinforced the adoption of the digitization of healthcare.
Latin America as the Middle East & Africa now turn towards AI imaging solutions to bridge resource gaps and provide extended access
Pilot projects for AI chest X-ray screening for tuberculosis have been launched in Brazil and Argentina, but GCC countries are adopting AI through the major hospital chains. Cloud-based models of AI will then solve infrastructure deficiencies and enable scalable diagnostics in underserved regions.
Core Strategic Questions Answered in This Report
Q. What is the expected growth trajectory of artificial intelligence in the medical imaging market from 2024 to 2035?
The global AI in medical imaging market is projected to grow from USD 1.36 billion in 2024 to USD 36.32 billion by 2035, reflecting a CAGR of 34.8% over the forecast period (2025–2035). This rapid expansion is driven by the urgent need for workflow automation, early disease detection, and improved diagnostic accuracy across healthcare settings.
Q. Which key factors are fuelling the growth of AI in the medical imaging market?
Several critical factors drive market growth:
Rising prevalence of chronic and acute conditions requiring swift imaging diagnoses.
Advances in deep learning architectures for image reconstruction and lesion detection.
Regulatory approvals and reimbursement pathways for AI-enabled diagnostic tools.
Hospital investments in digital health infrastructure and AI integrations.
Increasing demand for remote and point-of-care imaging capabilities.
Q. What are the primary challenges hindering the growth of AI in the medical imaging market?
Key challenges include:
Data privacy and security concerns surrounding patient imaging data.
The complexity of integrating AI tools with legacy PACS and HIS systems.
Variability in image acquisition protocols across institutions affects algorithm performance.
Clinician resistance due to trust and liability considerations around AI recommendations.
High costs and lengthy timelines for clinical validation and regulatory clearance.
Q. Which regions currently lead the AI in the medical imaging market in terms of market share?
North America leads, driven by advanced digital health ecosystems, strong R&D funding, and early AI adoption by major hospital networks. Europe follows, supported by regulatory frameworks and multi-centre validation initiatives, while Asia-Pacific is the fastest-growing region due to government-backed healthcare digitization efforts.
Q. What emerging opportunities are anticipated in the AI in medical imaging market?
The market landscape is ripe with new opportunities, including:
Expansion of AI-driven point-of-care ultrasound and portable imaging devices.
Integration of multi-modal AI models combining imaging, genomic, and EMR data.
Growth of managed AI services offering turnkey deployment and ongoing support.
Partnerships between AI vendors and telemedicine platforms for remote diagnostics.
Development of AI algorithms for rare disease detection and precision imaging.
Key Benefits for Stakeholders
The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter’s Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.
Table of Contents
285 Pages
- Chapter 1. Market Snapshot
- 1.1. Market Definition & Report Overview
- 1.2. Market Segmentation
- 1.3. Key Takeaways
- 1.3.1. Top Investment Pockets
- 1.3.2. Top Winning Strategies
- 1.3.3. Market Indicators Analysis
- 1.3.4. Top Impacting Factors
- 1.4. Application Ecosystem Analysis
- 1.4.1. 360’ Analysis
- Chapter 2. Executive Summary
- 2.1. CEO/CXO Standpoint
- 2.2. Strategic Insights
- 2.3. ESG Analysis
- 2.4 Market Attractiveness Analysis (top leader’s point of view on market)
- 2.5.key Findings
- Chapter 3. Research Methodology
- 3.1 Research Objective
- 3.2 Supply Side Analysis
- 3.1.1. Primary Research
- 3.1.2. Secondary Research
- 3.3 Demand Side Analysis
- 3.1.3. Primary Research
- 3.1.4. Secondary Research
- 3.2. Forecasting Models
- 3.2.1. Assumptions
- 3.2.2. Forecasts Parameters
- 3.3. Competitive breakdown
- 3.3.1. Market Positioning
- 3.3.2. Competitive Strength
- 3.4. Scope of the Study
- 3.4.1. Research Assumption
- 3.4.2. Inclusion & Exclusion
- 3.4.3. Limitations
- Chapter 4. Application Landscape
- 4.1. Market Dynamics
- 4.1.1. Drivers
- 4.1.2. Restraints
- 4.1.3. Opportunities
- 4.2. Porter’s 5 Forces Model
- 4.2.1. Bargaining Power of Buyer
- 4.2.2. Bargaining Power of Supplier
- 4.2.3. Threat of New Entrants
- 4.2.4. Threat of Substitutes
- 4.2.5. Competitive Rivalry
- 4.3. Value Chain Analysis
- 4.4. PESTEL Analysis
- 4.5. Pricing Analysis and Trends
- 4.6. Key growth factors and trends analysis
- 4.7. Market Share Analysis (2025)
- 4.8. Top Winning Strategies (2025)
- 4.9. Trade Data Analysis (Import Export)
- 4.10. Regulatory Guidelines
- 4.11. Historical Data Analysis
- 4.12. Analyst Recommendation & Conclusion
- Chapter 5. Global Artificial Intelligence (AI) in Medical Imaging Market Size & Forecasts by Technology 2025-2035
- 5.1. Market Overview
- 5.1.1. Market Size and Forecast By Technology 2025-2035
- 5.2. Deep Learning
- 5.2.1. Market definition, current market trends, growth factors, and opportunities
- 5.2.2. Market size analysis, by region, 2025-2035
- 5.2.3. Market share analysis, by country, 2025-2035
- 5.3. NLP
- 5.3.1. Market definition, current market trends, growth factors, and opportunities
- 5.3.2. Market size analysis, by region, 2025-2035
- 5.3.3. Market share analysis, by country, 2025-2035
- 5.4. Others
- 5.4.1. Market definition, current market trends, growth factors, and opportunities
- 5.4.2. Market size analysis, by region, 2025-2035
- 5.4.3. Market share analysis, by country, 2025-2035
- Chapter 6. Global Artificial Intelligence (AI) in Medical Imaging Market Size & Forecasts by Application 2025–2035
- 6.1. Market Overview
- 6.1.1. Market Size and Forecast By Application 2025-2035
- 6.2. Neurology
- 6.2.1. Market definition, current market trends, growth factors, and opportunities
- 6.2.2. Market size analysis, by region, 2025-2035
- 6.2.3. Market share analysis, by country, 2025-2035
- 6.3. Orthopedics
- 6.3.1. Market definition, current market trends, growth factors, and opportunities
- 6.3.2. Market size analysis, by region, 2025-2035
- 6.3.3. Market share analysis, by country, 2025-2035
- 6.4. Respiratory and Pulmonary
- 6.4.1. Market definition, current market trends, growth factors, and opportunities
- 6.4.2. Market size analysis, by region, 2025-2035
- 6.4.3. Market share analysis, by country, 2025-2035
- 6.5. Cardiology
- 6.5.1. Market definition, current market trends, growth factors, and opportunities
- 6.5.2. Market size analysis, by region, 2025-2035
- 6.5.3. Market share analysis, by country, 2025-2035
- 6.6. Breast Screening
- 6.6.1. Market definition, current market trends, growth factors, and opportunities
- 6.6.2. Market size analysis, by region, 2025-2035
- 6.6.3. Market share analysis, by country, 2025-2035
- 6.7. Others
- 6.7.1. Market definition, current market trends, growth factors, and opportunities
- 6.7.2. Market size analysis, by region, 2025-2035
- 6.7.3. Market share analysis, by country, 2025-2035
- Chapter 7. Global Artificial Intelligence (AI) in Medical Imaging Market Size & Forecasts by End Use 2025–2035
- 7.1. Market Overview
- 7.1.1. Market Size and Forecast By End Use 2025-2035
- 7.2. Hospitals
- 7.2.1. Market definition, current market trends, growth factors, and opportunities
- 7.2.2. Market size analysis, by region, 2025-2035
- 7.2.3. Market share analysis, by country, 2025-2035
- 7.3. Diagnostic Centers
- 7.3.1. Market definition, current market trends, growth factors, and opportunities
- 7.3.2. Market size analysis, by region, 2025-2035
- 7.3.3. Market share analysis, by country, 2025-2035
- 7.4. Others
- 7.4.1. Market definition, current market trends, growth factors, and opportunities
- 7.4.2. Market size analysis, by region, 2025-2035
- 7.4.3. Market share analysis, by country, 2025-2035
- Chapter 8. Global Artificial Intelligence (AI) in Medical Imaging Market Size & Forecasts by Modalities 2025–2035
- 5.1. Market Overview
- 8.1.1. Market Size and Forecast By Modalities 2025-2035
- 8.2. CT Scan
- 8.2.1. Market definition, current market trends, growth factors, and opportunities
- 8.2.2. Market size analysis, by region, 2025-2035
- 8.2.3. Market share analysis, by country, 2025-2035
- 8.3. MRI
- 8.3.1. Market definition, current market trends, growth factors, and opportunities
- 8.3.2. Market size analysis, by region, 2025-2035
- 8.3.3. Market share analysis, by country, 2025-2035
- 8.4. X-rays
- 8.4.1. Market definition, current market trends, growth factors, and opportunities
- 8.4.2. Market size analysis, by region, 2025-2035
- 8.4.3. Market share analysis, by country, 2025-2035
- 8.5. Ultrasound
- 8.5.1. Market definition, current market trends, growth factors, and opportunities
- 8.5.2. Market size analysis, by region, 2025-2035
- 8.5.3. Market share analysis, by country, 2025-2035
- 8.6. Nuclear Imaging
- 8.6.1. Market definition, current market trends, growth factors, and opportunities
- 8.6.2. Market size analysis, by region, 2025-2035
- 8.6.3. Market share analysis, by country, 2025-2035
- Chapter 9. Global Artificial Intelligence (AI) in Medical Imaging Market Size & Forecasts by Region 2025–2035
- 9.1. Regional Overview 2025-2035
- 9.2. Top Leading and Emerging Nations
- 9.3. North America Artificial Intelligence (AI) in Medical Imaging Market
- 9.3.1. U.S. Artificial Intelligence (AI) in Medical Imaging Market
- 9.3.1.1. Technology breakdown size & forecasts, 2025-2035
- 9.3.1.2. Application breakdown size & forecasts, 2025-2035
- 9.3.1.3. End Use breakdown size & forecasts, 2025-2035
- 9.3.1.4. Modalities breakdown size & forecasts, 2025-2035
- 9.3.2. Canada Artificial Intelligence (AI) in Medical Imaging Market
- 9.3.2.1. Technology breakdown size & forecasts, 2025-2035
- 9.3.2.2. Application breakdown size & forecasts, 2025-2035
- 9.3.2.3. End Use breakdown size & forecasts, 2025-2035
- 9.3.2.4. Modalities breakdown size & forecasts, 2025-2035
- 9.3.3. Mexico Artificial Intelligence (AI) in Medical Imaging Market
- 9.3.3.1. Technology breakdown size & forecasts, 2025-2035
- 9.3.3.2. Application breakdown size & forecasts, 2025-2035
- 9.3.3.3. End Use breakdown size & forecasts, 2025-2035
- 9.3.3.4. Modalities breakdown size & forecasts, 2025-2035
- 9.4. Europe Artificial Intelligence (AI) in Medical Imaging Market
- 9.4.1. UK Artificial Intelligence (AI) in Medical Imaging Market
- 9.4.1.1. Technology breakdown size & forecasts, 2025-2035
- 9.4.1.2. Application breakdown size & forecasts, 2025-2035
- 9.4.1.3. End Use breakdown size & forecasts, 2025-2035
- 9.4.1.4. Modalities breakdown size & forecasts, 2025-2035
- 9.4.2. Germany Artificial Intelligence (AI) in Medical Imaging Market
- 9.4.2.1. Technology breakdown size & forecasts, 2025-2035
- 9.4.2.2. Application breakdown size & forecasts, 2025-2035
- 9.4.2.3. End Use breakdown size & forecasts, 2025-2035
- 9.4.2.4. Modalities breakdown size & forecasts, 2025-2035
- 9.4.3. France Artificial Intelligence (AI) in Medical Imaging Market
- 9.4.3.1. Technology breakdown size & forecasts, 2025-2035
- 9.4.3.2. Application breakdown size & forecasts, 2025-2035
- 9.4.3.3. End Use breakdown size & forecasts, 2025-2035
- 9.4.3.4. Modalities breakdown size & forecasts, 2025-2035
- 9.4.4. Spain Artificial Intelligence (AI) in Medical Imaging Market
- 9.4.4.1. Technology breakdown size & forecasts, 2025-2035
- 9.4.4.2. Application breakdown size & forecasts, 2025-2035
- 9.4.4.3. End Use breakdown size & forecasts, 2025-2035
- 9.4.4.4. Modalities breakdown size & forecasts, 2025-2035
- 9.4.5. Italy Artificial Intelligence (AI) in Medical Imaging Market
- 9.4.5.1. Technology breakdown size & forecasts, 2025-2035
- 9.4.5.2. Application breakdown size & forecasts, 2025-2035
- 9.4.5.3. End Use breakdown size & forecasts, 2025-2035
- 9.4.5.4. Modalities breakdown size & forecasts, 2025-2035
- 9.4.6. Rest of Europe Artificial Intelligence (AI) in Medical Imaging Market
- 9.4.6.1. Technology breakdown size & forecasts, 2025-2035
- 9.4.6.2. Application breakdown size & forecasts, 2025-2035
- 9.4.6.3. End Use breakdown size & forecasts, 2025-2035
- 9.4.6.4. Modalities breakdown size & forecasts, 2025-2035
- 9.5. Asia Pacific Artificial Intelligence (AI) in Medical Imaging Market
- 9.5.1. China Artificial Intelligence (AI) in Medical Imaging Market
- 9.5.1.1. Technology breakdown size & forecasts, 2025-2035
- 9.5.1.2. Application breakdown size & forecasts, 2025-2035
- 9.5.1.3. End Use breakdown size & forecasts, 2025-2035
- 9.5.1.4. Modalities breakdown size & forecasts, 2025-2035
- 9.5.2. India Artificial Intelligence (AI) in Medical Imaging Market
- 9.5.2.1. Technology breakdown size & forecasts, 2025-2035
- 9.5.2.2. Application breakdown size & forecasts, 2025-2035
- 9.5.2.3. End Use breakdown size & forecasts, 2025-2035
- 9.5.2.4. Modalities breakdown size & forecasts, 2025-2035
- 9.5.3. Japan Artificial Intelligence (AI) in Medical Imaging Market
- 9.5.3.1. Technology breakdown size & forecasts, 2025-2035
- 9.5.3.2. Application breakdown size & forecasts, 2025-2035
- 9.5.3.3. End Use breakdown size & forecasts, 2025-2035
- 9.5.3.4. Modalities breakdown size & forecasts, 2025-2035
- 9.5.4. Australia Artificial Intelligence (AI) in Medical Imaging Market
- 9.5.4.1. Technology breakdown size & forecasts, 2025-2035
- 9.5.4.2. Application breakdown size & forecasts, 2025-2035
- 9.5.4.3. End Use breakdown size & forecasts, 2025-2035
- 9.5.4.4. Modalities breakdown size & forecasts, 2025-2035
- 9.5.5. South Korea Artificial Intelligence (AI) in Medical Imaging Market
- 9.5.5.1. Technology breakdown size & forecasts, 2025-2035
- 9.5.5.2. Application breakdown size & forecasts, 2025-2035
- 9.5.5.3. End Use breakdown size & forecasts, 2025-2035
- 9.5.5.4. Modalities breakdown size & forecasts, 2025-2035
- 9.5.6. Rest of APAC Artificial Intelligence (AI) in Medical Imaging Market
- 9.5.6.1. Technology breakdown size & forecasts, 2025-2035
- 9.5.6.2. Application breakdown size & forecasts, 2025-2035
- 9.5.6.3. End Use breakdown size & forecasts, 2025-2035
- 9.5.6.4. Modalities breakdown size & forecasts, 2025-2035
- 9.6. LAMEA Artificial Intelligence (AI) in Medical Imaging Market
- 9.6.1. Brazil Artificial Intelligence (AI) in Medical Imaging Market
- 9.6.1.1. Technology breakdown size & forecasts, 2025-2035
- 9.6.1.2. Application breakdown size & forecasts, 2025-2035
- 9.6.1.3. End Use breakdown size & forecasts, 2025-2035
- 9.6.1.4. Modalities breakdown size & forecasts, 2025-2035
- 9.6.2. Argentina Artificial Intelligence (AI) in Medical Imaging Market
- 9.6.2.1. Technology breakdown size & forecasts, 2025-2035
- 9.6.2.2. Application breakdown size & forecasts, 2025-2035
- 9.6.2.3. End Use breakdown size & forecasts, 2025-2035
- 9.6.2.4. Modalities breakdown size & forecasts, 2025-2035
- 9.6.3. UAE Artificial Intelligence (AI) in Medical Imaging Market
- 9.6.3.1. Technology breakdown size & forecasts, 2025-2035
- 9.6.3.2. Application breakdown size & forecasts, 2025-2035
- 9.6.3.3. End Use breakdown size & forecasts, 2025-2035
- 9.6.3.4. Modalities breakdown size & forecasts, 2025-2035
- 9.6.4. Saudi Arabia (KSA Artificial Intelligence (AI) in Medical Imaging Market
- 9.6.4.1. Technology breakdown size & forecasts, 2025-2035
- 9.6.4.2. Application breakdown size & forecasts, 2025-2035
- 9.6.4.3. End Use breakdown size & forecasts, 2025-2035
- 9.6.4.4. Modalities breakdown size & forecasts, 2025-2035
- 9.6.5. Africa Artificial Intelligence (AI) in Medical Imaging Market
- 9.6.5.1. Technology breakdown size & forecasts, 2025-2035
- 9.6.5.2. Application breakdown size & forecasts, 2025-2035
- 9.6.5.3. End Use breakdown size & forecasts, 2025-2035
- 9.6.5.4. Modalities breakdown size & forecasts, 2025-2035
- 9.6.6. Rest of LAMEA Artificial Intelligence (AI) in Medical Imaging Market
- 9.6.6.1. Technology breakdown size & forecasts, 2025-2035
- 9.6.6.2. Application breakdown size & forecasts, 2025-2035
- 9.6.6.3. End Use breakdown size & forecasts, 2025-2035
- 9.6.6.4. Modalities breakdown size & forecasts, 2025-2035
- Chapter 10. Company Profiles
- 10.1. Top Market Strategies
- 10.2. Company Profiles
- 10.2.1. IBM Watson Health
- 10.2.1.1. Company Overview
- 10.2.1.2. Key Executives
- 10.2.1.3. Company Snapshot
- 10.2.1.4. Financial Performance (Subject to Data Availability)
- 10.2.1.5. Product/Services Port
- 10.2.1.6. Recent Development
- 10.2.1.7. Market Strategies
- 10.2.1.8. SWOT Analysis
- 10.2.2. Google Health
- 10.2.3. Siemens Healthineers
- 10.2.4. GE Healthcare
- 10.2.5. Philips Healthcare
- 10.2.6. Aidoc
- 10.2.7. Zebra Medical Vision
- 10.2.8. Butterfly Network
- 10.2.9. Caption Health
- 10.2.10. Tempus Labs
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.


