Report cover image

Global AI Server Market Size, Trend & Opportunity Analysis Report, by End Use (BFSI, IT and Telecom, Security, Medical, Others), Processor Type (GPU-based Servers, FPGA-based Servers, ASIC-based Servers), Cooling Technology (Air Cooling, Liquid Cooling, H

Published Dec 03, 2025
Length 285 Pages
SKU # KAIS20696951

Description

Market Definition and Introduction

The global AI server market was valued at USD 30.74 billion in 2024 and is anticipated to reach USD 448.81 billion by 2035, expanding at a CAGR of 27.6% during the forecast period (2025–2035). For enterprises globally nowadays, the move to digital ecosystems is intensifying as they are implementing AI-optimised computing infrastructure as a strategic necessity to do business rather than making it optional. AI servers have become the backbone for modern-day transformation in business as purpose-built computing units focused on workloads for deep learning, machine learning, and data inference applications. The game-changing generative AI, cloud-native workloads, as well as data-driven automation are sweeping across every vertical in which businesses need such strong and energy-efficient AI server architectures. Companies are investing heavily in high-performance GPU, FPGA, and ASIC servers to match the inherent complexity of deeper neural networks, large language models shrunk to memory, and multimodal environments for AI training.

AI is now pervading within each industry-from BFSI to risk analytics, and autonomous medical diagnostic AI servers have turned into linchpins of computational intelligence. Hyperscale data centres together with edge computing frameworks are now driving the architectural rethinking of servers to bring throughput faster at a reduced latency. The drastic variation towards hybrid and liquid cooling technologies is radically transforming server management, ensuring sustainability without compromising performance. Moreover, growing demand for AI model inference at the edge is accelerating innovations in compact, rack-mounted, and blade server formats optimised for real-time analytics and distributed intelligence.

Skirmishes have intensified among tech giants and chipmakers to find their respective markets for AI-native server designs and achieve the much-wanted increase in processing density while being energy-efficient. Manufacturers are joining hands with cloud service providers for the delivery of customised hardware acceleration frameworks that prepare themselves for compatibility with the software stacks driven by AI. This tipping point in the evolution of industries, where the level of sophistication of the hardware melds seamlessly with algorithmic precision to achieve computational superiority, is sure to change the face of digital intelligence by 2035.

Recent Developments in the Industry

In April 2024, NVIDIA unveiled its next-generation Blackwell GPU architecture, designed specifically for AI training and inference at massive scale. This launch aims to boost throughput in hyperscale data centres and power frontier models in enterprise AI.

In February 2024, Intel Corporation introduced its Xeon 6 processors, optimised for AI servers with enhanced performance per watt metrics, catering to growing enterprise needs for scalable inference and real-time analytics.

In September 2023, AMD expanded its AI server portfolio with the EPYC 9004 series, incorporating integrated accelerators and AI software support to streamline deployment across cloud and on-premise environments.

In July 2023, Microsoft launched Azure Boost AI, a proprietary AI server optimisation technology embedded in its cloud stack, designed to enhance training latency and scale large language model (LLM) execution natively within Microsoft’s cloud regions.

Market Dynamics

Using AI servers as enablers of computational acceleration is now an indispensable task.

Demand has really grown across cloud providers, enterprises, and research institutions. Rapidly magnifying is the huge data and the commercialisation of generative AI models, enhancing the requirement for scalable GPU and ASIC-based architecture. Businesses are quickly migrating from traditional server designs to designs that are optimised for AI workloads, offering a high degree of parallelism and low latency.

Innovation in Cooling Systems Due to Energy Efficiency and Sustainability Challenges

While the unprecedented increase in computational workloads has, at the same time, sprung onto its place sustainability challenges, power consumption, and heat density constitute the two main bottlenecks for which companies are investing in liquid and hybrid cooling systems for performance maintenance. Transitioning from air cooling to immersion and direct liquid cooling has now become critical to achieving the ESG targets while lowering TCO.

Hardware Bottlenecks and Supply Chain Disruptions Act as Restraints

The AI server market may be growing, but hardware bottlenecks or semiconductor shortages are a major challenge. Advanced node manufacturing–especially for GPUs and ASIC chips–has a reliance that causes the outages sporadically. Hence, these limitations shackle production scalability and, in turn, tamper with the delivery timelines of hyperscale data centre projects.

Opportunities With Edge AI and Industry 5.0 Adoption

The real-time analytics and autonomy being offered by Edge AI span verticals such as healthcare, defence, and industrial automation. The scope of AI servers integrated at the edge towards predictive maintenance, surveillance analytics, and patient diagnostics offers massive market opportunities. The onset of Industry 5.0 is fuelling the demand for compact, low-latency systems and AI servers that fuse human-machine collaboration with intelligent automation.

Trends Towards Hybrid AI Infrastructure and Custom Processor Design

The industry is witnessing a paradigm shift towards hybrid AI infrastructures combining on-premise and cloud-based AI workloads. Chipmakers are also entering the domain of designing domain-specific processors optimised for generative AI, computer vision, and NLP tasks. This kind of customisation indicates a shift from general-purpose computing towards task-specific acceleration, which is opening up new frontiers for innovation in the AI server market.

Attractive Opportunities in the Market

Generative AI Explosion – Training-centric servers in demand for LLMs and multimodal AI applications
Healthcare Diagnostics Boom – Imaging and patient data analysis require high-speed, reliable AI infrastructure
AI in BFSI – Fraud detection and algorithmic trading demand real-time inference servers
Edge AI Expansion – Compact AI servers deployed in smart factories, cities, and vehicles
Sovereign AI Cloud Infrastructure – Governments investing in private AI server farms for national security
Energy-Efficient AI Hardware – Innovations targeting thermal optimisation and reduced TCO
AI-Powered Telecom – Network automation and traffic forecasting drive AI server deployment
AI Server-as-a-Service – Cloud-based access to scalable AI compute accelerates SME adoption
Custom Silicon for AI – Proprietary chips optimise performance and lower power draw
AI-Enabled Surveillance – Security ecosystems adopting inference servers for video analytics

Report Segmentation

By End Use: BFSI, IT and Telecom, Security, Medical, Others

By Processor Type: GPU-based Servers, FPGA-based Servers, ASIC-based Servers

By Cooling Technology: Air Cooling, Liquid Cooling, Hybrid Cooling

By Form Factor: Rack-mounted Servers, Blade Servers, Tower Servers

By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)

Key Market Players

Intel Corporation, AMD (Advanced Micro Devices), NVIDIA Corporation, Lenovo Group Ltd., HP Inc., Dell Technologies Inc., Apple Inc., Microsoft Corporation, ASUS, Acer Inc.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2024–2035
Report Pages: 293

Dominating Segments

GPU-based Servers Dominate AI Infrastructure with Unparalleled Computational Efficiency and Training Capability

GPU-based servers now occupy the most market share due to the fact that they offer the most powerful parallel processing and scalability. The speed of large AI model training with such servers is immense, and they deliver the most attractive energy-to-performance ratio for both training and inference tasks. Many tech giants are taking big leaps forward with their multi-GPU cluster configurations in order to lower processing time and improve AI throughput. Therefore, these GPU servers have become essential in running deep learning frameworks such as TensorFlow, PyTorch, and MXNet, which increase the complexity of dynamic AI models. Continuous innovation in GPU architecture, such as NVIDIA’s Hopper and AMD’s MI300 series, is clearly beginning to drastically change the economics of data centres, allowing for much better compute density and reduced cooling footprints.

IT and telecom already lead adoption worldwide through AI-driven network intelligence and automation

The IT and Telecom segment is quickly emerging as a key driver of AI system adoption as it dives deep into AI-specific tools that are essential in reducing network interference through AI-empowered network optimisation, prediction maintenance, and automated service delivery. The servers are catering to 5G network cores, real-time data traffic monitoring, and decreasing latency of cloud-native functions. The convergence of AI and IoT has made communication infrastructure an intelligent self-diagnosing ecosystem that also ensures that services are self-adaptable to changing workloads. Major telecom providers now designate AI edge nodes that can easily connect with cloud networks to support data-driven agility and service innovation.

Liquid Cooling Technology Races Ahead as the Most Energy-Efficient Solution for High-Density AI Workloads

Liquid cooling is the most rapidly growing technology in AI server infrastructure with respect to heat dissipation and operational efficacy. With a dense populace of AI training clusters, traditional air cooling systems are unable to maintain thermal efficiency. Liquid immersion cooling ensures huge energy preservation concurrently with increasing the life of components and their reliability. Many data centre operators in Europe and the Asia-Pacific are increasing output in liquid-cooled AI server systems for their carbon neutrality and to reduce the total cost of ownership. This technology metamorphosis of synergy amidst sustainability and performance has brought forward innovative advancements.

Key Takeaways

AI Server Surge – Enterprises scale their compute infrastructure to meet AI deployment demands
Training Dominates – Generative AI models drive massive demand for training-optimised servers
Inference at the Edge – Real-time insights delivered closer to data sources with compact servers
Healthcare Adoption – Diagnostic imaging and medical modelling leverage high-performance computing
Telecom and BFSI Push – Data-heavy industries require scalable AI infrastructures
Data Sovereignty Impact – Localised server deployments align with regulatory mandates
Hybrid Cloud Boom – AI servers integrated into edge and multicloud frameworks
Custom Chip Evolution – Tailored silicon enhances AI server efficiency and reliability
Emerging Economies Rising – Investment in local server farms and AI clusters accelerates
Energy Consideration – Sustainable AI server designs gain traction across global data centres

Regional Insights

North America Accounts for the Highest Percentage Since AI-first enterprises and Hyperscale Cloud Providers Are Present There

Countries within North America are what fuel demand for AI servers, which keep strong investments from hyperscalers, technology giants, and AI-first start-ups. The U.S., again, leads in providing avenues for AI innovations and applications from sectors like defence, fintech, healthcare, and enterprise SaaS. Generative AI commercial platforms grow rapidly, which egg on building huge AI infrastructures throughout the North American region on a large scale.

Europe's Green AI and Sovereign Infrastructure Initiatives, Translated into AI Server Growth

Europe is quite strong for investments in the sovereign cloud initiatives as well as in green data centres. Germany, France, the UK, and other countries pour funds into either AI supercomputing facilities or public-private AI innovation projects. The regulatory frameworks, such as GDPR, also push up demand for on-premise AI servers and edges for supporting the AI applications.

Asia-Pacific Emerges Fastest Gaining Region Supported by Digital Transformation and Cloud Demand

Asia-Pacific is expected to have the highest growth rate during the forecast period, driven by the efforts of AI-based digitisation in China, India, Japan, and South Korea. While supporting AI infrastructure development, strong investments are being channelled into local tech giants for developing AI server farms for consumer and industrial AI applications. Their urbanisation and penetration of mobiles in society have mushroomed of data generation, which has further increased the intensity of demand.

Gradual Entry of Government and Private Initiatives into AI Server Adoption in LATAM and MEA

Latin America and the Middle East & and Africa are slowly joining the bandwagon of AI servers, boosted by the growing interests from smart city initiatives, fintech hubs, and national AI programs. Although there still exist infrastructure challenges, pilot programs and partnerships in AI with global players are creating a steady thrust for data centre and server investments.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025-2035
Report Pages: 293

Core Strategic Questions Answered in This Report

Q. What is the expected growth trajectory of the AI server market from 2024 to 2035?

The global AI server market is projected to grow from USD 30.74 billion in 2024 to USD 448.81 billion by 2035, expanding at a CAGR of 27.6%. This sharp upward trend is driven by rapid enterprise AI adoption, hyperscale data centre expansion, and increasing demand for training and inference servers.

Q. Which key factors are fuelling the growth of the AI server market?

Several key factors are propelling market growth:

Surging demand for AI-powered services across sectors
Emergence of generative AI and large language models
Proliferation of edge AI and hybrid infrastructure
Increasing cloud deployments and AI-as-a-Service models
Government investments in AI computing infrastructure
Advancements in GPU and AI-specific server components

Q. What are the primary challenges hindering the growth of the AI server market?

Major challenges include:

High capital expenditure for server deployment and upgrades
Limited technical expertise and AI infrastructure in emerging regions
Power and cooling demands of large-scale AI clusters
Regulatory complexities around data sovereignty and security
Interoperability and integration issues across diverse AI ecosystems

Q. Which regions currently lead the AI server market in terms of market share?

North America currently leads the AI server market due to high AI maturity and strong investment in infrastructure. Europe follows with a focus on green AI and data privacy, while Asia-Pacific is rapidly catching up, driven by government support and tech innovation.

Q. What emerging opportunities are anticipated in the AI server market?

The market is ripe with new opportunities, including:

Training servers for generative AI and multimodal platforms
On-premise AI solutions for highly regulated industries
Energy-efficient AI server designs for sustainable data centres
AI servers tailored for edge environments in smart cities and factories
Server-as-a-service offerings enabling SMEs to scale AI cost-effectively

Key Benefits for Stakeholders

The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter's Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.

Table of Contents

285 Pages
Chapter 1. Market Snapshot
1.1. Market Definition & Report Overview
1.2. Market Segmentation
1.3. Key Takeaways
1.3.1. Top Investment Pockets
1.3.2. Top Winning Strategies
1.3.3. Market Indicators Analysis
1.3.4. Top Impacting Factors
1.4. Type Ecosystem Analysis
1.4.1. 360’ Analysis
Chapter 2. Executive Summary
2.1. CEO/CXO Standpoint
2.2. Strategic Insights
2.3. ESG Analysis
2.4 Market Attractiveness Analysis (top leader’s point of view on market)
2.5.key Findings
Chapter 3. Research Methodology
3.1 Research Objective
3.2 Supply Side Analysis
3.1.1. Primary Research
3.1.2. Secondary Research
3.3 Demand Side Analysis
3.1.3. Primary Research
3.1.4. Secondary Research
3.2. Forecasting Models
3.2.1. Assumptions
3.2.2. Forecasts Parameters
3.3. Competitive breakdown
3.3.1. Market Positioning
3.3.2. Competitive Strength
3.4. Scope of the Study
3.4.1. Research Assumption
3.4.2. Inclusion & Exclusion
3.4.3. Limitations
Chapter 4. Industry Landscape
4.1. Market Dynamics
4.1.1. Drivers
4.1.2. Restraints
4.1.3. Opportunities
4.2. Porter’s 5 Forces Model
4.2.1. Bargaining Power of Buyer
4.2.2. Bargaining Power of Supplier
4.2.3. Threat of New Entrants
4.2.4. Threat of Substitutes
4.2.5. Competitive Rivalry
4.3. Value Chain Analysis
4.4. PESTEL Analysis
4.5. Pricing Analysis and Trends
4.6. Key growth factors and trends analysis
4.7. Market Share Analysis (2025)
4.8. Top Winning Strategies (2025)
4.9. Trade Data Analysis (Import Export)
4.10. Regulatory Guidelines
4.11. Historical Data Analysis
4.12. Analyst Recommendation & Conclusion
Chapter 5. Global AI Server Market Size & Forecasts by End Use 2025-2035
5.1. Market Overview
5.1.1. Market Size and Forecast By End Use 2025-2035
5.2. BFSI
5.2.1. Market definition, current market trends, growth factors, and opportunities
5.2.2. Market size analysis, by region, 2025-2035
5.2.3. Market share analysis, by country, 2025-2035
5.3. IT and Telecom
5.3.1. Market definition, current market trends, growth factors, and opportunities
5.3.2. Market size analysis, by region, 2025-2035
5.3.3. Market share analysis, by country, 2025-2035
5.4. Security
5.4.1. Market definition, current market trends, growth factors, and opportunities
5.4.2. Market size analysis, by region, 2025-2035
5.4.3. Market share analysis, by country, 2025-2035
5.5. Medical
5.5.1. Market definition, current market trends, growth factors, and opportunities
5.5.2. Market size analysis, by region, 2025-2035
5.5.3. Market share analysis, by country, 2025-2035
5.6. Others
5.6.1. Market definition, current market trends, growth factors, and opportunities
5.6.2. Market size analysis, by region, 2025-2035
5.6.3. Market share analysis, by country, 2025-2035
Chapter 6. Global AI Server Market Size & Forecasts by Processor Type 2025–2035
6.1. Market Overview
6.1.1. Market Size and Forecast By Processor Type 2025-2035
6.2. GPU-based Servers
6.2.1. Market definition, current market trends, growth factors, and opportunities
6.2.2. Market size analysis, by region, 2025-2035
6.2.3. Market share analysis, by country, 2025-2035
6.3. FPGA-based Servers
6.3.1. Market definition, current market trends, growth factors, and opportunities
6.3.2. Market size analysis, by region, 2025-2035
6.3.3. Market share analysis, by country, 2025-2035
6.4. ASIC-based Servers
6.4.1. Market definition, current market trends, growth factors, and opportunities
6.4.2. Market size analysis, by region, 2025-2035
6.4.3. Market share analysis, by country, 2025-2035
Chapter 7. Global AI Server Market Size & Forecasts by Cooling Technology 2025–2035
7.1. Market Overview
7.1.1. Market Size and Forecast By Cooling Technology 2025-2035
7.2. Air Cooling
7.2.1. Market definition, current market trends, growth factors, and opportunities
7.2.2. Market size analysis, by region, 2025-2035
7.2.3. Market share analysis, by country, 2025-2035
7.3. Liquid Cooling
7.3.1. Market definition, current market trends, growth factors, and opportunities
7.3.2. Market size analysis, by region, 2025-2035
7.3.3. Market share analysis, by country, 2025-2035
7.4. Hybrid Cooling
7.4.1. Market definition, current market trends, growth factors, and opportunities
7.4.2. Market size analysis, by region, 2025-2035
7.4.3. Market share analysis, by country, 2025-2035
Chapter 8. Global AI Server Market Size & Forecasts by Form Factor 2025–2035
8.1. Market Overview
8.1.1. Market Size and Forecast By Form Factor 2025-2035
8.2. Rack-mounted Servers
8.2.1. Market definition, current market trends, growth factors, and opportunities
8.2.2. Market size analysis, by region, 2025-2035
8.2.3. Market share analysis, by country, 2025-2035
8.3. Blade Servers
8.3.1. Market definition, current market trends, growth factors, and opportunities
8.3.2. Market size analysis, by region, 2025-2035
8.3.3. Market share analysis, by country, 2025-2035
8.4. Tower Servers
8.4.1. Market definition, current market trends, growth factors, and opportunities
8.4.2. Market size analysis, by region, 2025-2035
8.4.3. Market share analysis, by country, 2025-2035
Chapter 9. Global AI Server Market Size & Forecasts by Region 2025–2035
9.1. Regional Overview 2025-2035
9.2. Top Leading and Emerging Nations
9.3. North America AI Server Market
9.3.1. U.S. AI Server Market
9.3.1.1. End Use breakdown size & forecasts, 2025-2035
9.3.1.2. Processor Type breakdown size & forecasts, 2025-2035
9.3.1.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.3.1.4. Form Factor breakdown size & forecasts, 2025-2035
9.3.2. Canada AI Server Market
9.3.2.1. End Use breakdown size & forecasts, 2025-2035
9.3.2.2. Processor Type breakdown size & forecasts, 2025-2035
9.3.2.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.3.2.4. Form Factor breakdown size & forecasts, 2025-2035
9.3.3. Mexico AI Server Market
9.3.3.1. End Use breakdown size & forecasts, 2025-2035
9.3.3.2. Processor Type breakdown size & forecasts, 2025-2035
9.3.3.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.3.3.4. Form Factor breakdown size & forecasts, 2025-2035
9.4. Europe AI Server Market
9.4.1. UK AI Server Market
9.4.1.1. End Use breakdown size & forecasts, 2025-2035
9.4.1.2. Processor Type breakdown size & forecasts, 2025-2035
9.4.1.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.4.1.4. Form Factor breakdown size & forecasts, 2025-2035
9.4.2. Germany AI Server Market
9.4.2.1. End Use breakdown size & forecasts, 2025-2035
9.4.2.2. Processor Type breakdown size & forecasts, 2025-2035
9.4.2.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.4.2.4. Form Factor breakdown size & forecasts, 2025-2035
9.4.3. France AI Server Market
9.4.3.1. End Use breakdown size & forecasts, 2025-2035
9.4.3.2. Processor Type breakdown size & forecasts, 2025-2035
9.4.3.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.4.3.4. Form Factor breakdown size & forecasts, 2025-2035
9.4.4. Spain AI Server Market
9.4.4.1. End Use breakdown size & forecasts, 2025-2035
9.4.4.2. Processor Type breakdown size & forecasts, 2025-2035
9.4.4.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.4.4.4. Form Factor breakdown size & forecasts, 2025-2035
9.4.5. Italy AI Server Market
9.4.5.1. End Use breakdown size & forecasts, 2025-2035
9.4.5.2. Processor Type breakdown size & forecasts, 2025-2035
9.4.5.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.4.5.4. Form Factor breakdown size & forecasts, 2025-2035
9.4.6. Rest of Europe AI Server Market
9.4.6.1. End Use breakdown size & forecasts, 2025-2035
9.4.6.2. Processor Type breakdown size & forecasts, 2025-2035
9.4.6.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.4.6.4. Form Factor breakdown size & forecasts, 2025-2035
9.5. Asia Pacific AI Server Market
9.5.1. China AI Server Market
9.5.1.1. End Use breakdown size & forecasts, 2025-2035
9.5.1.2. Processor Type breakdown size & forecasts, 2025-2035
9.5.1.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.5.1.4. Form Factor breakdown size & forecasts, 2025-2035
9.5.2. India AI Server Market
9.5.2.1. End Use breakdown size & forecasts, 2025-2035
9.5.2.2. Processor Type breakdown size & forecasts, 2025-2035
9.5.2.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.5.2.4. Form Factor breakdown size & forecasts, 2025-2035
9.5.3. Japan AI Server Market
9.5.3.1. End Use breakdown size & forecasts, 2025-2035
9.5.3.2. Processor Type breakdown size & forecasts, 2025-2035
9.5.3.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.5.3.4. Form Factor breakdown size & forecasts, 2025-2035
9.5.4. Australia AI Server Market
9.5.4.1. End Use breakdown size & forecasts, 2025-2035
9.5.4.2. Processor Type breakdown size & forecasts, 2025-2035
9.5.4.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.5.4.4. Form Factor breakdown size & forecasts, 2025-2035
9.5.5. South Korea AI Server Market
9.5.5.1. End Use breakdown size & forecasts, 2025-2035
9.5.5.2. Processor Type breakdown size & forecasts, 2025-2035
9.5.5.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.5.5.4. Form Factor breakdown size & forecasts, 2025-2035
9.5.6. Rest of APAC AI Server Market
9.5.6.1. End Use breakdown size & forecasts, 2025-2035
9.5.6.2. Processor Type breakdown size & forecasts, 2025-2035
9.5.6.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.5.6.4. Form Factor breakdown size & forecasts, 2025-2035
9.6. LAMEA AI Server Market
9.6.1. Brazil AI Server Market
9.6.1.1. End Use breakdown size & forecasts, 2025-2035
9.6.1.2. Processor Type breakdown size & forecasts, 2025-2035
9.6.1.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.6.1.4. Form Factor breakdown size & forecasts, 2025-2035
9.6.2. Argentina AI Server Market
9.6.2.1. End Use breakdown size & forecasts, 2025-2035
9.6.2.2. Processor Type breakdown size & forecasts, 2025-2035
9.6.2.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.6.2.4. Form Factor breakdown size & forecasts, 2025-2035
9.6.3. UAE AI Server Market
9.6.3.1. End Use breakdown size & forecasts, 2025-2035
9.6.3.2. Processor Type breakdown size & forecasts, 2025-2035
9.6.3.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.6.3.4. Form Factor breakdown size & forecasts, 2025-2035
9.6.4. Saudi Arabia (KSA AI Server Market
9.6.4.1. End Use breakdown size & forecasts, 2025-2035
9.6.4.2. Processor Type breakdown size & forecasts, 2025-2035
9.6.4.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.6.4.4. Form Factor breakdown size & forecasts, 2025-2035
9.6.5. Africa AI Server Market
9.6.5.1. End Use breakdown size & forecasts, 2025-2035
9.6.5.2. Processor Type breakdown size & forecasts, 2025-2035
9.6.5.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.6.5.4. Form Factor breakdown size & forecasts, 2025-2035
9.6.6. Rest of LAMEA AI Server Market
9.6.6.1. End Use breakdown size & forecasts, 2025-2035
9.6.6.2. Processor Type breakdown size & forecasts, 2025-2035
9.6.6.3. Cooling Technology breakdown size & forecasts, 2025-2035
9.6.6.4. Form Factor breakdown size & forecasts, 2025-2035
Chapter 10. Company Profiles
10.1. Top Market Strategies
10.2. Company Profiles
10.2.1. NVIDIA Corporation
10.2.1.1. Company Overview
10.2.1.2. Key Executives
10.2.1.3. Company Snapshot
10.2.1.4. Financial Performance (Subject to Data Availability)
10.2.1.5. Product/Services Port
10.2.1.6. Recent Development
10.2.1.7. Market Strategies
10.2.1.8. SWOT Analysis
10.2.2. Intel Corporation
10.2.3. IBM Corporation
10.2.4. Hewlett Packard Enterprise (HPE)
10.2.5. Dell Technologies
10.2.6. Lenovo Group Ltd.
10.2.7. Cisco Systems, Inc.
10.2.8. Advanced Micro Devices, Inc. (AMD)
10.2.9. Super Micro Computer, Inc.
10.2.10. Huawei Technologies Co., Ltd.
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.