Report cover image

Global AI for Drug Development and Discovery Market Size, Trend & Opportunity Analysis Report, by Therapeutic Area (Oncology, Infectious Diseases, Neurology, Metabolic, Cardiovascular, Immunology, and Others), Technology (Machine Learning, Natural Languag

Published Aug 09, 2025
Length 285 Pages
SKU # KAIS20696876

Description

Market Definition and Introduction

The global AI for drug development and discovery market was valued at USD 1.95 billion in 2024 and is anticipated to reach USD 34.07 billion by 2035, expanding at a staggering CAGR of 29.7% during the forecast period (2025–2035). AI as a transformational force at work in every phase of drug discovery, from target identification to clinical optimization, comes in at a time when the pharmaceutical industry is facing increased research and development costs, time-consuming approval timelines, and added complexity in clinical trials. It enables scientists to go through vast biomedical data sets, predict the most likely molecular interactions with great precision, and shorten the time to design new therapeutics, throttling development cycles and lowering attrition rates.

Not anymore peripheral but quite fully in the center now, AI is a driving force for innovation as precision medicine gains unique traction that is unprecedented ever. Today, big pharmaceutical as well as biotechnology companies use machine learning algorithms and natural language processing in their context-aware systems to deal with the increasingly complex biology of diseases, identify druggable targets, and optimize their molecular structures in silico before heading into the more expensive laboratory stages. Integration of AI into the very thick fabric of the drug discovery ecosystem will go way beyond improving hit identification and lead optimization; it will also be a game-changer in stratifying patients for clinical trials and even help their chances for success at the regulatory stage.

The merging of omics technologies, high-throughput screening, and real-world evidence analysis with AI is amplifying this momentum further. By deep learning modeling with genomic, proteomic, and metabolomic datasets, biologists are able to glean hidden biological patterns in addition to predicting drug responses with astounding accuracy. The gradual acceptance of AI-generated data and validation protocols by regulatory agencies paves the path toward reduced complexity in AI-enabled drug development, with increasing attraction for numerous venture capital inflows and strategic partnerships in the entire pharmaceutical landscape.

Recent Developments in the Industry

In June 2024, Insilico Medicine announced the initiation of a Phase II clinical trial for INS018_055, an AI-designed small molecule drug targeting idiopathic pulmonary fibrosis, marking one of the most advanced AI-generated drug candidates to enter mid-stage trials.

In March 2024, Atomwise entered into a multi-year collaboration with Sanofi to leverage its AI-powered AtomNet® platform for the discovery of novel small-molecule drugs across multiple therapeutic areas, with a potential deal value exceeding USD 1 billion.

In October 2023, BenevolentAI signed a strategic research agreement with AstraZeneca to apply its AI-driven target discovery platform in chronic kidney disease and idiopathic pulmonary fibrosis, expanding their existing multi-year partnership.

In July 2023, Recursion Pharmaceuticals acquired Cyclica and Valence Discovery, integrating their AI-based drug design capabilities to strengthen its end-to-end AI-enabled drug discovery pipeline.

Market Dynamics

Increasing Research and Development Costs, Boosting Drug Development Timelines, Which Are Prompting AI Implementation

The current average cost for developing a new compound exceeds USD 2 billion, and this has forced pharmaceutical companies to install AI-driven devices to streamline various functions such as identifying viable candidates for drugs faster, optimizing resource allocation, and minimizing trial-and-error experimentation.

The Joining of AI into Multi-Omics Data that is Enhancing Precision Medicine Initiatives

What AI algorithms and multiomics data have done for researchers-researchers who are able to decode complex disease pathways, identify new biomarkers, and predict an individual patient's drug response, moving precision medicine closer to its promise.

Strategic Alliances and Mergers: Consolidating the Ecosystem of AI Drug Discovery

Currently, an increase in strategic partnerships between AI startups and pharmaceutical giants is paving the way for the co-development of AI platforms with ready access to proprietary datasets, computing infrastructure, and regulatory expertise for the fastest breakthroughs.

Adaptation by regulators: Encouraging the Specification of AI

Regulators throughout the world are course-opening policies that will create a pathway to the formal acceptance of AI-generated data in preclinical and clinical submissions, which, in turn, enhances industry confidence for AI development.

Infrastructure Cloud and HPC Scaling to Enable Increased Application of Scalable AI

Advancements in cloud computing and high-performance computing (HPC) environments should facilitate AI platforms in other respects by enabling applications to perform complex molecular simulations and vast biomedical datasets at scale, thus removing former computational bottlenecks.

Attractive Opportunities in the Market

Pipeline Expansion in AI-Driven Oncology – Cancer drug discovery remains the largest beneficiary of AI innovation.
Collaborative Data Ecosystems – Shared databases enhance cross-industry drug target discovery.
AI-Enabled Clinical Trial Optimization – Predictive models improve patient recruitment and trial success rates.
Accelerated Small Molecule Design – Deep learning expedites hit-to-lead progression.
Biomarker Discovery Integration – AI identifies predictive biomarkers for targeted therapies.
Generative AI Models – New compound design surpasses traditional cheminformatics capabilities.
R&D Outsourcing to AI Specialists – Pharma leverages third-party AI-driven CROs.
Regulatory Harmonization – Global AI validation standards streamline market entry.

Report Segmentation

By Therapeutic Area: Oncology, Infectious Diseases, Neurology, Metabolic, Cardiovascular, Immunology, and Others

By Technology: Machine Learning, Natural Language Processing, Context-Aware Processing, and Others

By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)

Key Market Players

Insilico Medicine, Atomwise, BenevolentAI, Recursion Pharmaceuticals, Exscientia, Deep Genomics, BERG LLC, NVIDIA Corporation, Microsoft Corporation, and IBM Watson Health.

Report Aspects

Base Year: 2024
Historic Years: 2022, 2023, 2024
Forecast Period: 2025-2035
Report Pages: 293

Dominating segments

Services Segment is Leading the AI in Drug Development and Discovery Market Due to Increased R&D Optimization

The services segment is now at the forefront of AI in drug discovery-making as pharmaceutical companies choose to outsource AI-enabled discovery processes to technology providers and CROs with robust algorithms, computational infrastructure, and mirror datasets. These services cover the whole range of drug target discovery, from early-stage drug target discovery to marketed product safety monitoring, enabling companies to shorten time to market while reducing operational risk. While the technology solutions segment is advancing at an incredible pace, where hone-in R&D teams are harnessing machine learning and natural language processing to gain better insights into disease biology and drug mechanisms.

Machine Learning Technologies Now the Driver of Innovations in Drug Discovery via AI

Machine learning has continued never-ending dominate in the technological spectrum for its unparalleled ability to reveal patterns embedded in multidimensional spaces of biomedical data, thus allowing rapid hypothesis generation and iterative cycles of drug design. On the other hand, prominence is being gained by natural language processing for its role in scouring unstructured scientific literature, patents, and clinical trial records for previously unexplored therapeutic possibilities.

Emerging Importance of Context-Aware Processing in Multi-Modal Analysis of Drug Data

Context-aware processing is beginning to emerge as a fundamental enabling technology for the integration of various heterogeneous datasets - from genomic sequences to electronic health records - into coherent analytical frameworks. It is becoming increasingly indispensable to stratify patient populations; to predict the occurrence of adverse effects, and design the AI-generated drug candidates to specific clinical contexts.

Key Takeaways

AI Revolutionizing R&D – Accelerates timelines and reduces drug development costs.
Services Lead the Market – Outsourced AI expertise drives discovery efficiency.
Machine Learning Dominance – Algorithms enable precision-driven drug design.
Precision Medicine Expansion – Multi-omics integration enhances patient-specific therapies.
Generative AI Disruption – Novel compound creation outpaces traditional methods.
Strategic Partnerships – Pharma-AI alliances amplify innovation pipelines.
Regulatory Evolution – Guidelines for AI-based submissions gain global traction.
Cloud & HPC Leverage – Scalable AI infrastructures accelerate computation.
Oncology Focus – Cancer remains the top therapeutic application for AI tools.
Asia-Pacific Surge – Rapidly developing AI capabilities fuel regional growth.

Regional Insights

North America is Leading the AI for Drug Development and Discovery Market with a Well-Developed R&D Infrastructure

With the greatest market share, a confluence of pharmaceutical hubs, AI technology providers, and a favorable investment climate boosts North America. The epicenter for AI-pharma collaborations has shifted notably to the U.S. as large amounts of funding have flown into early-stage AI drug discovery startups and the integration of AI into established R&D pipelines.

Europe Strengthens AI Integration in Drug Discovery through Collaborative Research Frameworks

There is a close second to Europe, with strong cross-border research programs, regulatory support from the European Medicines Agency, and the willingness of pharmaceutical giants to invest in AI-based projects. The UK, Germany, and Switzerland particularly stand out as hotbeds of AI-driven biotech innovation.

Asia-Pacific to Witness Fastest Growth in AI-Driven Drug Discovery

AI-Driven Drug Discovery in Asia-Pacific will be the fastest growth region due to increasing investment in AI infrastructure, life sciences initiatives by governments, and burgeoning AI talent pools in China, India, and South Korea. The region seeks to position itself as a production and innovation hub for AI-integrated drug development.

LAMEA Region Gradually Expanding AI Capabilities in Drug Discovery

Though adoption is still at an early stage, these countries in Latin America, the Middle East & and Africa are gradually introducing AI tools, establishing partnerships with global AI technology providers and academic collaborators, and laying the foundation for future expansion.

Core Strategic Questions Answered in This Report

Q. What is the expected growth trajectory of the AI for drug development and discovery market from 2024 to 2035?

The global AI for drug development and discovery market is projected to grow from USD 1.95 billion in 2024 to USD 34.07 billion by 2035, reflecting a CAGR of 29.7% over the forecast period (2025–2035). This exceptional growth is driven by the increasing adoption of AI across the drug discovery continuum, enabling faster timelines, cost savings, and higher clinical success rates.

Q. Which key factors are fuelling the growth of the AI for drug development and discovery market?

Several key factors are propelling market growth:

The rising complexity of drug discovery and the need for data-driven insights.
Integration of AI with omics datasets and precision medicine initiatives.
Increase in strategic partnerships between AI firms and pharmaceutical companies.
Technological advancements in machine learning, NLP, and context-aware processing.
Expanding regulatory acceptance of AI-enabled drug discovery methodologies.
Surge in oncology-focused AI applications and generative compound design.

Q. What are the primary challenges hindering the growth of the AI for drug development and discovery market?

Major challenges include:

Regulatory uncertainty around AI-generated data validation.
High cost of developing and maintaining AI platforms.
Data quality and interoperability issues across sources.
Shortage of AI-specialized drug discovery professionals.
Integration challenges in legacy R&D workflows.

Q. Which regions currently lead the AI for drug development and discovery market in terms of market share?

North America leads the market, driven by advanced AI infrastructure, strong pharma-tech collaborations, and significant venture capital inflows. Europe follows, with a robust research ecosystem and regulatory support fostering AI adoption in drug development.

Q. What emerging opportunities are anticipated in the AI for drug development and discovery market?

The market is poised for opportunities in:

Generative AI for novel drug design.
Integration of AI into decentralized clinical trials.
Global collaborative data sharing platforms.
Cloud-based AI drug discovery-as-a-service offerings.
Expansion into emerging markets with growing AI ecosystems.

Key Benefits for Stakeholders

The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
Porter's Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
A detailed examination of market segmentation helps identify existing and emerging opportunities.
Key countries within each region are analysed based on their revenue contributions to the overall market.
The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.

Table of Contents

285 Pages
Market Definition and Introduction
The global AI for drug development and discovery market was valued at USD 1.95 billion in 2024 and is anticipated to reach USD 34.07 billion by 2035, expanding at a staggering CAGR of 29.7% during the forecast period (2025–2035). AI as a transformational force at work in every phase of drug discovery, from target identification to clinical optimization, comes in at a time when the pharmaceutical industry is facing increased research and development costs, time-consuming approval timelines, and added complexity in clinical trials. It enables scientists to go through vast biomedical data sets, predict the most likely molecular interactions with great precision, and shorten the time to design new therapeutics, throttling development cycles and lowering attrition rates.
Not anymore peripheral but quite fully in the center now, AI is a driving force for innovation as precision medicine gains unique traction that is unprecedented ever. Today, big pharmaceutical as well as biotechnology companies use machine learning algorithms and natural language processing in their context-aware systems to deal with the increasingly complex biology of diseases, identify druggable targets, and optimize their molecular structures in silico before heading into the more expensive laboratory stages. Integration of AI into the very thick fabric of the drug discovery ecosystem will go way beyond improving hit identification and lead optimization; it will also be a game-changer in stratifying patients for clinical trials and even help their chances for success at the regulatory stage.
The merging of omics technologies, high-throughput screening, and real-world evidence analysis with AI is amplifying this momentum further. By deep learning modeling with genomic, proteomic, and metabolomic datasets, biologists are able to glean hidden biological patterns in addition to predicting drug responses with astounding accuracy. The gradual acceptance of AI-generated data and validation protocols by regulatory agencies paves the path toward reduced complexity in AI-enabled drug development, with increasing attraction for numerous venture capital inflows and strategic partnerships in the entire pharmaceutical landscape.
Recent Developments in the Industry
In June 2024, Insilico Medicine announced the initiation of a Phase II clinical trial for INS018_055, an AI-designed small molecule drug targeting idiopathic pulmonary fibrosis, marking one of the most advanced AI-generated drug candidates to enter mid-stage trials.
In March 2024, Atomwise entered into a multi-year collaboration with Sanofi to leverage its AI-powered AtomNet® platform for the discovery of novel small-molecule drugs across multiple therapeutic areas, with a potential deal value exceeding USD 1 billion.
In October 2023, BenevolentAI signed a strategic research agreement with AstraZeneca to apply its AI-driven target discovery platform in chronic kidney disease and idiopathic pulmonary fibrosis, expanding their existing multi-year partnership.
In July 2023, Recursion Pharmaceuticals acquired Cyclica and Valence Discovery, integrating their AI-based drug design capabilities to strengthen its end-to-end AI-enabled drug discovery pipeline.
Market Dynamics
Increasing Research and Development Costs, Boosting Drug Development Timelines, Which Are Prompting AI Implementation
The current average cost for developing a new compound exceeds USD 2 billion, and this has forced pharmaceutical companies to install AI-driven devices to streamline various functions such as identifying viable candidates for drugs faster, optimizing resource allocation, and minimizing trial-and-error experimentation.
The Joining of AI into Multi-Omics Data that is Enhancing Precision Medicine Initiatives
What AI algorithms and multiomics data have done for researchers-researchers who are able to decode complex disease pathways, identify new biomarkers, and predict an individual patient's drug response, moving precision medicine closer to its promise.
Strategic Alliances and Mergers: Consolidating the Ecosystem of AI Drug Discovery
Currently, an increase in strategic partnerships between AI startups and pharmaceutical giants is paving the way for the co-development of AI platforms with ready access to proprietary datasets, computing infrastructure, and regulatory expertise for the fastest breakthroughs.
Adaptation by regulators: Encouraging the Specification of AI
Regulators throughout the world are course-opening policies that will create a pathway to the formal acceptance of AI-generated data in preclinical and clinical submissions, which, in turn, enhances industry confidence for AI development.
Infrastructure Cloud and HPC Scaling to Enable Increased Application of Scalable AI
Advancements in cloud computing and high-performance computing (HPC) environments should facilitate AI platforms in other respects by enabling applications to perform complex molecular simulations and vast biomedical datasets at scale, thus removing former computational bottlenecks.
Attractive Opportunities in the Market
• Pipeline Expansion in AI-Driven Oncology – Cancer drug discovery remains the largest beneficiary of AI innovation.
• Collaborative Data Ecosystems – Shared databases enhance cross-industry drug target discovery.
• AI-Enabled Clinical Trial Optimization – Predictive models improve patient recruitment and trial success rates.
• Accelerated Small Molecule Design – Deep learning expedites hit-to-lead progression.
• Biomarker Discovery Integration – AI identifies predictive biomarkers for targeted therapies.
• Generative AI Models – New compound design surpasses traditional cheminformatics capabilities.
• R&D Outsourcing to AI Specialists – Pharma leverages third-party AI-driven CROs.
• Regulatory Harmonization – Global AI validation standards streamline market entry.
Report Segmentation
By Therapeutic Area: Oncology, Infectious Diseases, Neurology, Metabolic, Cardiovascular, Immunology, and Others
By Technology: Machine Learning, Natural Language Processing, Context-Aware Processing, and Others
By Region: North America (U.S., Canada, Mexico), Europe (UK, Germany, France, Spain, Italy, Spain, Rest of Europe), Asia-Pacific (China, India, Japan, Australia, South Korea, Rest of Asia-Pacific), LAMEA (Brazil, Argentina, UAE, Saudi Arabia (KSA), Africa Rest of Latin America)
Key Market Players
Insilico Medicine, Atomwise, BenevolentAI, Recursion Pharmaceuticals, Exscientia, Deep Genomics, BERG LLC, NVIDIA Corporation, Microsoft Corporation, and IBM Watson Health.
Report Aspects
• Base Year: 2024
• Historic Years: 2022, 2023, 2024
• Forecast Period: 2025-2035
• Report Pages: 293
Dominating segments
Services Segment is Leading the AI in Drug Development and Discovery Market Due to Increased R&D Optimization
The services segment is now at the forefront of AI in drug discovery-making as pharmaceutical companies choose to outsource AI-enabled discovery processes to technology providers and CROs with robust algorithms, computational infrastructure, and mirror datasets. These services cover the whole range of drug target discovery, from early-stage drug target discovery to marketed product safety monitoring, enabling companies to shorten time to market while reducing operational risk. While the technology solutions segment is advancing at an incredible pace, where hone-in R&D teams are harnessing machine learning and natural language processing to gain better insights into disease biology and drug mechanisms.
Machine Learning Technologies Now the Driver of Innovations in Drug Discovery via AI
Machine learning has continued never-ending dominate in the technological spectrum for its unparalleled ability to reveal patterns embedded in multidimensional spaces of biomedical data, thus allowing rapid hypothesis generation and iterative cycles of drug design. On the other hand, prominence is being gained by natural language processing for its role in scouring unstructured scientific literature, patents, and clinical trial records for previously unexplored therapeutic possibilities.
Emerging Importance of Context-Aware Processing in Multi-Modal Analysis of Drug Data
Context-aware processing is beginning to emerge as a fundamental enabling technology for the integration of various heterogeneous datasets - from genomic sequences to electronic health records - into coherent analytical frameworks. It is becoming increasingly indispensable to stratify patient populations; to predict the occurrence of adverse effects, and design the AI-generated drug candidates to specific clinical contexts.
Key Takeaways
• AI Revolutionizing R&D – Accelerates timelines and reduces drug development costs.
• Services Lead the Market – Outsourced AI expertise drives discovery efficiency.
• Machine Learning Dominance – Algorithms enable precision-driven drug design.
• Precision Medicine Expansion – Multi-omics integration enhances patient-specific therapies.
• Generative AI Disruption – Novel compound creation outpaces traditional methods.
• Strategic Partnerships – Pharma-AI alliances amplify innovation pipelines.
• Regulatory Evolution – Guidelines for AI-based submissions gain global traction.
• Cloud & HPC Leverage – Scalable AI infrastructures accelerate computation.
• Oncology Focus – Cancer remains the top therapeutic application for AI tools.
• Asia-Pacific Surge – Rapidly developing AI capabilities fuel regional growth.
Regional Insights
North America is Leading the AI for Drug Development and Discovery Market with a Well-Developed R&D Infrastructure
With the greatest market share, a confluence of pharmaceutical hubs, AI technology providers, and a favorable investment climate boosts North America. The epicenter for AI-pharma collaborations has shifted notably to the U.S. as large amounts of funding have flown into early-stage AI drug discovery startups and the integration of AI into established R&D pipelines.
Europe Strengthens AI Integration in Drug Discovery through Collaborative Research Frameworks
There is a close second to Europe, with strong cross-border research programs, regulatory support from the European Medicines Agency, and the willingness of pharmaceutical giants to invest in AI-based projects. The UK, Germany, and Switzerland particularly stand out as hotbeds of AI-driven biotech innovation.
Asia-Pacific to Witness Fastest Growth in AI-Driven Drug Discovery
AI-Driven Drug Discovery in Asia-Pacific will be the fastest growth region due to increasing investment in AI infrastructure, life sciences initiatives by governments, and burgeoning AI talent pools in China, India, and South Korea. The region seeks to position itself as a production and innovation hub for AI-integrated drug development.
LAMEA Region Gradually Expanding AI Capabilities in Drug Discovery
Though adoption is still at an early stage, these countries in Latin America, the Middle East & and Africa are gradually introducing AI tools, establishing partnerships with global AI technology providers and academic collaborators, and laying the foundation for future expansion.
Core Strategic Questions Answered in This Report
Q. What is the expected growth trajectory of the AI for drug development and discovery market from 2024 to 2035?
The global AI for drug development and discovery market is projected to grow from USD 1.95 billion in 2024 to USD 34.07 billion by 2035, reflecting a CAGR of 29.7% over the forecast period (2025–2035). This exceptional growth is driven by the increasing adoption of AI across the drug discovery continuum, enabling faster timelines, cost savings, and higher clinical success rates.
Q. Which key factors are fuelling the growth of the AI for drug development and discovery market?
Several key factors are propelling market growth:
• The rising complexity of drug discovery and the need for data-driven insights.
• Integration of AI with omics datasets and precision medicine initiatives.
• Increase in strategic partnerships between AI firms and pharmaceutical companies.
• Technological advancements in machine learning, NLP, and context-aware processing.
• Expanding regulatory acceptance of AI-enabled drug discovery methodologies.
• Surge in oncology-focused AI applications and generative compound design.
Q. What are the primary challenges hindering the growth of the AI for drug development and discovery market?
Major challenges include:
• Regulatory uncertainty around AI-generated data validation.
• High cost of developing and maintaining AI platforms.
• Data quality and interoperability issues across sources.
• Shortage of AI-specialized drug discovery professionals.
• Integration challenges in legacy R&D workflows.
Q. Which regions currently lead the AI for drug development and discovery market in terms of market share?
North America leads the market, driven by advanced AI infrastructure, strong pharma-tech collaborations, and significant venture capital inflows. Europe follows, with a robust research ecosystem and regulatory support fostering AI adoption in drug development.
Q. What emerging opportunities are anticipated in the AI for drug development and discovery market?
The market is poised for opportunities in:
• Generative AI for novel drug design.
• Integration of AI into decentralized clinical trials.
• Global collaborative data sharing platforms.
• Cloud-based AI drug discovery-as-a-service offerings.
• Expansion into emerging markets with growing AI ecosystems.
Key Benefits for Stakeholders
• The report offers a quantitative assessment of market segments, emerging trends, projections, and market dynamics for the period 2024 to 2035.
• The report presents comprehensive market research, including insights into key growth drivers, challenges, and potential opportunities.
• Porter's Five Forces analysis evaluates the influence of buyers and suppliers, helping stakeholders make strategic, profit-driven decisions and strengthen their supplier-buyer relationships.
• A detailed examination of market segmentation helps identify existing and emerging opportunities.
• Key countries within each region are analysed based on their revenue contributions to the overall market.
• The positioning of market players enables effective benchmarking and provides clarity on their current standing within the industry.
• The report covers regional and global market trends, major players, key segments, application areas, and strategies for market expansion.
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.