Report cover image

Retail Analytics Market Report by Function (Customer Management, In-store Operation, Strategy and Planning, Supply Chain Management, Marketing and Merchandizing, and Others), Component (Software, Services), Deployment Mode (On-premises, Cloud-based), End

Published Aug 01, 2025
Length 147 Pages
SKU # IMRC20347097

Description

The global retail analytics market size reached USD 10.4 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 45.2 Billion by 2033, exhibiting a growth rate (CAGR) of 16.92% during 2025-2033. North America leads the market, driven by advanced technology infrastructure and the strong presence of major retail players. The retail analytics market is experiencing significant growth driven by the expanding digitization in organizations, rising use of cloud-based retail analytics solutions, and growing online shopping habits of consumers looking to save time and money.

The retail analytics industry is experiencing strong change, fueled by growing dependence on data for strategic choice and business process improvement. Sustainability is fast becoming mainstream retail strategy, and analytics is helping to monitor and report on the environment. Retailers are quantifying carbon footprints, reporting on energy consumption, and assessing the sustainability of supply chain partners. Analytics is also backing efforts like waste reduction, green product recommendations, and ethical sourcing. By integrating analytics with sustainable objectives, retailers are building a stronger brand reputation as well as addressing customer expectations for responsible business.

Retail Analytics Market Trends:

Growing Need for Personalized Customer Experience

Retailers are constantly emphasizing providing customers with very personalized experiences, and this is greatly pushing the usage of retail analytics solutions. As a result, a lot of companies are launching personalized retail solutions. For example, in 2025, Apple introduced Shop with a Specialist over Video in India, where people can shop online for apple products on the Apple Store. By gathering information from multiple sources like online surfing history, buying habits, loyalty schemes, and social media usage, companies are creating highly tailored marketing programs. Retail analytics solutions are assisting retailers to segment shoppers more efficiently, forecast tastes, and personalize product suggestions and offers based on that. With rising expectations for personalized shopping among customers, retailers are using sophisticated analytics solutions to drive engagement and satisfaction. Real-time personalization is emerging as a competitive advantage, with companies leveraging dynamic pricing and personalized offers to boost sales. Retailers are also embedding AI and ML into analytics platforms to improve accuracy and automate decision-making. The trend is speeding up as omnichannel retail gains momentum, with analytics platforms constantly gathering data both in physical and digital channels to optimize the customer journey.

Sudden Boom in E-Commerce and Digital Channels

The continuing growth of online retailing and digital channels is creating vast amounts of data, leading retailers to embrace advanced analytics to decipher it. With customers increasingly turning to online shopping, retailers are gathering rich information about customer behavior, such as click-through rates, cart abandonment, session length, and repeat visits. Retail analytics software is now being employed to monitor these online interactions in real-time so that companies can enhance website designs, enhance product exposure, and make user experience even better. With mobile shopping and app-based retailing also increasing, the analytics potential is expanding on various digital platforms. Retailers are utilizing data insights to enhance customer acquisition, increase retention rates, and refine their digital marketing campaigns. In this changing scenario, real-time analytics is starting to become a necessity to track key performance indicators (KPIs), identify market trends, and react in advance to customer behavior. IMARC Group predicts that the global e-commerce market is projected to attain USD 214.5 Trillion by 2033.

Artificial Intelligence (AI) and Machine Learning (ML) advancements

Artificial intelligence (AI) and machine learning (ML) technologies are revolutionizing the retail analytics industry, helping businesses gain deeper insights and automate intricate processes. Retailers are using AI-based analytics solutions actively to predict demand, identify fraud, and recognize emerging trends with great accuracy. ML algorithms are constantly working on big data sets to identify underlying patterns, refine pricing strategies, and suggest products in real-time. These technologies are also changing customer service with smart chatbots and virtual assistants, which are answering customer questions and facilitating purchases based on data-driven insights. Retailers are using AI to enhance inventory management by forecasting stock needs and reducing waste. Also, prescriptive analytics enabled by AI is facilitating more strategic decision-making by recommending the optimal course of action based on predictive outcomes. As these technologies proceed to advance, retailers are investing in AI-powered analytics to remain competitive and agile in an ever-changing market landscape. In 2025, Standard AI launched Vision Analytics empowers retailers and brands with insights into consumer behavior, product effectiveness, and store operations obtained through unmatched clarity of individuals, products, and interactions.

Retail Analytics Market Growth Drivers:

Omnichannel Retail Strategies Integration

Omnichannel retail strategies are being picked up by retailers in earnest, and analytics is at the center of their ability to provide seamless customer experiences across various touch points. Customers are interacting with brands in a multichannel environment combining physical interaction, website interaction, smartphone app interaction, and social media interaction, and retailers are gathering data from all these sources to build an integrated view of the customer experience. Retail analytics solutions are allowing companies to monitor behavior across channels, determine drop-off points, and maximize channel performance. For instance, a customer who is browsing online will subsequently come into a store to make a purchase, and analytics platforms are monitoring such behaviors to influence marketing and sales efforts. Stores are also leveraging omnichannel analytics for coordinating promotions, for cross-channel inventory management, and optimizing the efficiency of fulfillment. Such an approach is allowing companies to align their marketing, operations, and customer service initiatives to ultimately maximize brand consistency and consumer satisfaction. As the two worlds of digital and physical retail continue to merge, adoption of omnichannel analytics continues to gain speed steadily.

Supply Chain Optimization and Effective Inventory Management

Retailers are continuously applying analytics for better optimization of supply chain operations and inventory management, which is another key driver of the market. In an era of rising customer expectations to speedily and accurately deliver products, real-time data insights are being used to forecast demand, review stock quantities, and manage logistics more efficiently. Retail analytics software is monitoring product flow between warehouses and stores, allowing companies to cut overstocking, minimize stockouts, and improve replenishment accuracy. Predictive models are being used to determine the best order sizes and distribution schedules based on past performance and seasonal patterns. Geospatial analytics are also being employed by retailers to minimize transportation expenses and maximize service levels by optimizing warehouse positions and delivery routes. Analytics is also being utilised to track performance of suppliers, monitor lead times, and assess risks in supply chains. Through data-driven decision-making in procurement and inventory planning, retailers are enhancing operational effectiveness as well as profitability. These capabilities are becoming more of a necessity in an environment of changing consumer demand and supply chain disruptions across the world.

Increasing Use of Cloud-Based Analytics Solutions

Retailers are increasingly using cloud-based analytics platforms because they are scalable, flexible, and cost-effective. These platforms are allowing companies to capture, process, and analyze huge amounts of data without the need for heavy on-premise infrastructure. Cloud-based retail analytics solutions are giving real-time insights, quicker deployment, and simpler integration with current enterprise systems. Companies are using these solutions to work inter-departmentally, get remote access to data, and ensure consistency of reports. The move to cloud is also tightening data security and compliance because top vendors provide high-strength encryption and follow global data privacy regulations. Cloud platforms are also making it easy to use AI and ML by providing high-end computing capabilities on a pay-as-you-use basis. Retailers are gaining from subscription-based options that minimize initial investment and enable more agility in scaling up. As digital transformation gathers pace, cloud-based analytics is emerging as a key driver of innovation and competitive differentiation in retail.

Retail Analytics Market Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the global, regional, and country levels for 2025-2033. Our report has categorized the market based on function, component, deployment mode, end user.

Breakup by Function:
  • Customer Management
  • In-store Operation
  • Strategy and Planning
  • Supply Chain Management
  • Marketing and Merchandizing
  • Others
Customer management accounts for the majority of the market share

The report has provided a detailed breakup and analysis of the market based on the function. This includes customer management, in-store operation, strategy and planning, supply chain management, marketing and merchandizing, and others. According to the report, customer management represented the largest segment.

Due to the growing demand for individualized customer experiences and the strategic significance of customer loyalty and retention in a cutthroat retail environment, customer management leads the retail analytics market by function. Retailers may deliver customized marketing, improve customer interactions, and expand their service offerings by using analytics to obtain deep insights into customer behaviors, preferences, and purchasing habits. For instance, the Census Bureau data shows significant insights into retail sales and e-commerce trends which are crucial for customer management in retail analytics. In addition, the Annual Retail Trade Survey provides detailed annual sales, e-commerce sales, and inventories across various retail sectors. This can help businesses understand consumer buying patterns and adapt their customer management strategies accordingly. This data-driven strategy aids in the identification of valuable clients, forecasting their future purchasing patterns and putting in place efficient loyalty schemes. Furthermore, by facilitating real-time decision-making and predictive analytics, the incorporation of technologies like artificial intelligence (AI) and machine learning further augments the efficacy of these techniques.

Breakup by Component:
  • Software
  • Services
Software holds the largest share of the industry

A detailed breakup and analysis of the market based on the component have also been provided in the report. This includes software and services. According to the report, software accounted for the largest market share.

Software dominates the retail analytics industry as it is crucial to turning massive volumes of data into insights that can be put into practice, which helps retailers make better decisions. The U.S. Census Bureau reports that in Q12021, e-commerce sales made up almost 13% of overall sales, highlighting the significance of analytics in maximizing online sales tactics. In today's data-driven market climate, retail analytics software offers extensive solutions for customer behavior monitoring, inventory management, and sales forecasting. The growing use of digital operations in retail, as noted by the Bureau of Labor Statistics, calls for advanced analytics solutions to manage the scope and intricacy of contemporary retail operations.

Breakup by Deployment Mode:
  • On-premises
  • Cloud-based
Cloud-based represents the leading market segment

The report has provided a detailed breakup and analysis of the market based on the deployment mode. This includes on-premises and cloud-based. According to the report, cloud-based represented the largest segment.

Due to their scalability, flexibility, and affordability—all of which are critical for managing the enormous volumes of data created by contemporary retail operations—cloud-based solutions provide a positive impact on the retail analytics industry outlook. Retailers are able to efficiently handle peak shopping periods because they have the flexibility to scale resources up or down as needed. A U.S. Small Business Administration survey states that as cloud computing can lower IT overhead expenses and increase operational efficiency, small and medium-sized firms are adopting it at an increasing rate. This change is particularly important for the retail industry, where real-time data processing and analytics are required due to changing market conditions. Cloud systems make this possible by offering data storage and sophisticated analysis capabilities without requiring a substantial initial outlay of funds.

Breakup by End User:
  • Small and Medium Enterprises
  • Large Enterprises
Large enterprises exhibit a clear dominance in the market

A detailed breakup and analysis of the market based on the end user have also been provided in the report. This includes small and medium enterprises and large enterprises. According to the report, large enterprises accounted for the largest market share.

Due to their vast operational scope and the intricate data environments, they oversee, large organizations hold a dominant position in the end-user retail analytics market. These companies possess the infrastructure and financial means to invest in cutting-edge retail analytics solutions, which are essential for managing the enormous volumes of data produced across numerous channels and regions. Large businesses may learn a great deal about market trends, supply chain efficiency, and consumer behavior by integrating and analyzing this data. Strategic planning, competitiveness in international markets, and operational optimization all depend on this degree of analytics. Large businesses can also frequently use more advanced analytics, such as AI-driven tools and predictive modeling, to spur innovation and enhance consumer experiences.

Breakup By Region:
  • North America
  • United States
  • Canada
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Others
  • Latin America
  • Brazil
  • Mexico
  • Others
  • Middle East and Africa
North America leads the market, accounting for the largest retail analytics market share

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America represented the largest market for retail analytics.

North America dominates the retail analytics market due to its sophisticated technological infrastructure, there has been a widespread use of big data solutions, and large investments in artificial intelligence (AI) and machine learning. The U.S. Department of Commerce reports that North American retail e-commerce sales increased 32.4% in 2019 compared to 2020, indicating the sector's rapid expansion and the growing demand for advanced analytics. Large digital organizations and startups that specialize in retail analytics solutions to improve customer experiences and operational efficiency call this region home. According to the U.S. Bureau of Economic Analysis, the demand for analytics to comprehend consumer behavior, manage inventory, and improve supply chains is driven by the digital transformation in retail. This is further catalyzing the retail analytics market growth.

Competitive Landscape:
  • The retail analytics market research report has also provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the major market players in the retail analytics industry include 1010data Inc. (Advance Publications Inc.), Adobe Inc., Altair Engineering Inc., Flir Systems Inc., Fujitsu Limited, International Business Machines Corporation, Information Builders Inc., Microsoft Corporation, Microstrategy Incorporated, Oracle Corporation, Qlik Technologies Inc. (Thoma Bravo LLC), SAP SE, SAS Institute Inc., Tableau Software LLC (Salesforce.com Inc.), Tibco Software Inc, etc.
(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)
  • Some of the leading companies in the retail analytics space, such as Microsoft Corporation, Fujitsu Limited, Flir Systems Inc., Altair Engineering Inc., Adobe Inc., and 1010data Inc., are constantly improving their products to increase the retail analytics market value. 1010data Inc. is a cloud-based analytics provider with a strong emphasis on retail operations optimization. Adobe Inc. provides customized digital marketing solutions through its advanced Adobe Analytics platform. Retailers can enhance supply chain and inventory management with the assistance of Altair Engineering Inc., which incorporates analytics into product design. Flir Systems Inc. uses cutting-edge thermal imaging technology to gain insights into customer behavior and security. Complete retail solutions, such as data-driven point-of-sale systems, are provided by Fujitsu Limited. Microsoft Corporation, is advancing the personalization of shopping experiences by leveraging cutting-edge AI and cloud-based technologies to improve customer engagement. Collectively, these businesses are paving the way for sophisticated, data-driven retail strategy. For instance, Adobe Experience Platform delivered new tools such as customer journey analytics with which retailers can now leverage AI to detect broken experiences (or to uncover new opportunities). This update takes anomaly detection beyond the website — where it has been predominantly used — and allows brands to see where issues arise as shoppers move between channels.
  • Key Questions Answered in This Report

    1.What was the size of the global retail analytics market in 2024?

    2.What is the expected growth rate of the global retail analytics market during 2025-2033?

    3.What are the key factors driving the global retail analytics market?

    4.What has been the impact of COVID-19 on the global retail analytics market?

    5.What is the breakup of the global retail analytics market based on the function?

    6.What is the breakup of the global retail analytics market based on the component?

    7.What is the breakup of the global retail analytics market based on the deployment mode?

    8.What is the breakup of the global retail analytics market based on the end user?

    9.What are the key regions in the global retail analytics market?

    10.Who are the key players/companies in the global retail analytics market?

    Table of Contents

    147 Pages
    1 Preface
    2 Scope and Methodology
    2.1 Objectives of the Study
    2.2 Stakeholders
    2.3 Data Sources
    2.3.1 Primary Sources
    2.3.2 Secondary Sources
    2.4 Market Estimation
    2.4.1 Bottom-Up Approach
    2.4.2 Top-Down Approach
    2.5 Forecasting Methodology
    3 Executive Summary
    4 Introduction
    4.1 Overview
    4.2 Key Industry Trends
    5 Global Retail Analytics Market
    5.1 Market Overview
    5.2 Market Performance
    5.3 Impact of COVID-19
    5.4 Market Forecast
    6 Market Breakup by Function
    6.1 Customer Management
    6.1.1 Market Trends
    6.1.2 Market Forecast
    6.2 In-store Operation
    6.2.1 Market Trends
    6.2.2 Market Forecast
    6.3 Strategy and Planning
    6.3.1 Market Trends
    6.3.2 Market Forecast
    6.4 Supply Chain Management
    6.4.1 Market Trends
    6.4.2 Market Forecast
    6.5 Marketing and Merchandizing
    6.5.1 Market Trends
    6.5.2 Market Forecast
    6.6 Others
    6.6.1 Market Trends
    6.6.2 Market Forecast
    7 Market Breakup by Component
    7.1 Software
    7.1.1 Market Trends
    7.1.2 Market Forecast
    7.2 Services
    7.2.1 Market Trends
    7.2.2 Market Forecast
    8 Market Breakup by Deployment Mode
    8.1 On-premises
    8.1.1 Market Trends
    8.1.2 Market Forecast
    8.2 Cloud-based
    8.2.1 Market Trends
    8.2.2 Market Forecast
    9 Market Breakup by End User
    9.1 Small and Medium Enterprises
    9.1.1 Market Trends
    9.1.2 Market Forecast
    9.2 Large Enterprises
    9.2.1 Market Trends
    9.2.2 Market Forecast
    10 Market Breakup by Region
    10.1 North America
    10.1.1 United States
    10.1.1.1 Market Trends
    10.1.1.2 Market Forecast
    10.1.2 Canada
    10.1.2.1 Market Trends
    10.1.2.2 Market Forecast
    10.2 Asia Pacific
    10.2.1 China
    10.2.1.1 Market Trends
    10.2.1.2 Market Forecast
    10.2.2 Japan
    10.2.2.1 Market Trends
    10.2.2.2 Market Forecast
    10.2.3 India
    10.2.3.1 Market Trends
    10.2.3.2 Market Forecast
    10.2.4 South Korea
    10.2.4.1 Market Trends
    10.2.4.2 Market Forecast
    10.2.5 Australia
    10.2.5.1 Market Trends
    10.2.5.2 Market Forecast
    10.2.6 Indonesia
    10.2.6.1 Market Trends
    10.2.6.2 Market Forecast
    10.2.7 Others
    10.2.7.1 Market Trends
    10.2.7.2 Market Forecast
    10.3 Europe
    10.3.1 Germany
    10.3.1.1 Market Trends
    10.3.1.2 Market Forecast
    10.3.2 France
    10.3.2.1 Market Trends
    10.3.2.2 Market Forecast
    10.3.3 United Kingdom
    10.3.3.1 Market Trends
    10.3.3.2 Market Forecast
    10.3.4 Italy
    10.3.4.1 Market Trends
    10.3.4.2 Market Forecast
    10.3.5 Spain
    10.3.5.1 Market Trends
    10.3.5.2 Market Forecast
    10.3.6 Russia
    10.3.6.1 Market Trends
    10.3.6.2 Market Forecast
    10.3.7 Others
    10.3.7.1 Market Trends
    10.3.7.2 Market Forecast
    10.4 Latin America
    10.4.1 Brazil
    10.4.1.1 Market Trends
    10.4.1.2 Market Forecast
    10.4.2 Mexico
    10.4.2.1 Market Trends
    10.4.2.2 Market Forecast
    10.4.3 Others
    10.4.3.1 Market Trends
    10.4.3.2 Market Forecast
    10.5 Middle East and Africa
    10.5.1 Market Trends
    10.5.2 Market Breakup by Country
    10.5.3 Market Forecast
    11 SWOT Analysis
    11.1 Overview
    11.2 Strengths
    11.3 Weaknesses
    11.4 Opportunities
    11.5 Threats
    12 Value Chain Analysis
    13 Porters Five Forces Analysis
    13.1 Overview
    13.2 Bargaining Power of Buyers
    13.3 Bargaining Power of Suppliers
    13.4 Degree of Competition
    13.5 Threat of New Entrants
    13.6 Threat of Substitutes
    14 Price Analysis
    15 Competitive Landscape
    15.1 Market Structure
    15.2 Key Players
    15.3 Profiles of Key Players
    15.3.1 1010data Inc. (Advance Publications Inc.)
    15.3.1.1 Company Overview
    15.3.1.2 Product Portfolio
    15.3.2 Adobe Inc.
    15.3.2.1 Company Overview
    15.3.2.2 Product Portfolio
    15.3.2.3 Financials
    15.3.2.4 SWOT Analysis
    15.3.3 Altair Engineering Inc.
    15.3.3.1 Company Overview
    15.3.3.2 Product Portfolio
    15.3.3.3 Financials
    15.3.4 Flir Systems Inc.
    15.3.4.1 Company Overview
    15.3.4.2 Product Portfolio
    15.3.4.3 Financials
    15.3.4.4 SWOT Analysis
    15.3.5 Fujitsu Limited
    15.3.5.1 Company Overview
    15.3.5.2 Product Portfolio
    15.3.5.3 Financials
    15.3.5.4 SWOT Analysis
    15.3.6 International Business Machines Corporation
    15.3.6.1 Company Overview
    15.3.6.2 Product Portfolio
    15.3.6.3 Financials
    15.3.6.4 SWOT Analysis
    15.3.7 Information Builders Inc.
    15.3.7.1 Company Overview
    15.3.7.2 Product Portfolio
    15.3.8 Microsoft Corporation
    15.3.8.1 Company Overview
    15.3.8.2 Product Portfolio
    15.3.8.3 Financials
    15.3.8.4 SWOT Analysis
    15.3.9 Microstrategy Incorporated
    15.3.9.1 Company Overview
    15.3.9.2 Product Portfolio
    15.3.9.3 Financials
    15.3.9.4 SWOT Analysis
    15.3.10 Oracle Corporation
    15.3.10.1 Company Overview
    15.3.10.2 Product Portfolio
    15.3.10.3 Financials
    15.3.10.4 SWOT Analysis
    15.3.11 Qlik Technologies Inc. (Thoma Bravo LLC)
    15.3.11.1 Company Overview
    15.3.11.2 Product Portfolio
    15.3.12 SAP SE
    15.3.12.1 Company Overview
    15.3.12.2 Product Portfolio
    15.3.12.3 Financials
    15.3.12.4 SWOT Analysis
    15.3.13 SAS Institute Inc.
    15.3.13.1 Company Overview
    15.3.13.2 Product Portfolio
    15.3.13.3 SWOT Analysis
    15.3.14 Tableau Software LLC (Salesforce.com Inc.)
    15.3.14.1 Company Overview
    15.3.14.2 Product Portfolio
    15.3.15 Tibco Software Inc.
    15.3.15.1 Company Overview
    15.3.15.2 Product Portfolio
    15.3.15.3 SWOT Analysis
    How Do Licenses Work?
    Head shot

    Questions or Comments?

    Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.