Managed SPs: Optimizing the Value of AI with Managed Cloud Services
Description
This IDC Perspective discusses how success for managed SPs in utilizing automation, particularly AI, will require implementing a holistic set of capabilities that will optimize the value of automation while meeting the expected outcomes that organizations are looking to achieve when using managed cloud services. This document examines factors that involve defining the expected value and measuring outcomes when using AI with managed cloud services, providing insight into enterprise business concerns with AI when using managed cloud services, establishing a risk curve for automation, defining the critical capabilities required to manage and mitigate risks when utilizing AI as part of managed cloud services, and understanding the impact of competition and a potential move to new business models."With automation taking center stage in supporting managed cloud services, managed SPs need to design an effective blueprint for how best to deploy the many types of automation, particularly AI, to support provisioning these services, which requires taking a life-cycle approach for managed cloud services," says David Tapper, program VP, Outsourcing and Managed Cloud Services at IDC. "Investments that managed SPs must make to ensure that they can effectively support client use of AI as part of managed cloud services involve aligning the type of AI by stage in the life cycle of services based on KPIs and risk factors, architecting a business structure to support the use of AI, building an AI inventory management capability, and creating a road map of the evolution of AI versus labor."
Table of Contents
19 Pages
Executive Snapshot
Situation Overview
Executive summary
Bridging the business structure with AI across the life cycle of services for managed cloud services
The need to align AI types across the life cycle of services
Embedded transformation with managed cloud services
Aligning AI with each stage in the life cycle of services to optimize outputs while managing risks
Business structure required for automating the life cycle of services
Value of AI: Expected outcomes
Defining outcomes
Measuring outcomes
SLAs and SLOs drive the degree of risk across the life cycle for managed cloud services
Business concerns and risks with AI
Business concerns
Risk curves: Strategic considerations when using AI with managed cloud services
Life cycle curves of risks with AI
Business and IT KPIs align AI across the life cycle of services for managed cloud services
Operational risk factors for AI with managed cloud services
Managing and mitigating risks for AI while ensuring expected outcomes
Ownership of risk
Requirements for managing risks
Structural requirements
End-to-end inventory management system
Impact of partners and new business models
Public cloud providers
Industry business models
Advice for Service Providers
Learn More
Related research
Synopsis
Search Inside Report
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.
