Converged Workloads: Enabling Real-Time Enterprise Intelligence and AI Innovation
Description
This IDC Perspective explores how hybrid transactional/analytical processing (HTAP), or converged workloads, is redefining enterprise data architecture. By combining transactional reliability with analytical intelligence, these environments eliminate latency between data creation and insight, enabling real-time decision-making, continuous intelligence, and the seamless use of AI within business operations.This document examines the technologies, market dynamics, and adoption strategies driving this convergence and provides guidance for IT and data leaders modernizing their database environments to support greater agility, intelligent automation, and accelerated AI-driven innovation."AI and automation depend on accurate and timely data. Converged workloads transform databases from static systems of record into living systems of intelligence, where every transaction becomes an opportunity for reasoning, adaptation, and action." — Devin Pratt, research director, Data Management, IDC
Table of Contents
8 Pages
Executive Snapshot
Situation Overview
The Rationale for Convergence
Technology Drivers Behind HTAP
Agentic AI as the Catalyst for Real-Time Data
Industry Momentum Toward Converged Workloads
IT Impact
Simplification and Autonomy
Performance and Scalability
Security and Governance
Business Impact
Real-Time Decisioning and Continuous Intelligence
Agility and Competitiveness
Accelerating Innovation
Advice for the Technology Buyer
Focus on High-Value, Real-Time Use Cases
Embed Governance and Observability Early
Adopt AI-Embedded Databases
Plan for Agentic AI Integration
Learn More
Related Research
Synopsis
Search Inside Report
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.
