
Beyond GenAI Model Training: Reducing Cost and Latency and Improving Scalability of AI Inferencing Workloads in Production
Description
The IDC Perspective explores the challenges and innovations in scaling generative AI (GenAI) inference workloads in production, emphasizing cost reduction, latency improvement, and scalability. It highlights techniques like model compression, batching, caching, and parallelization to optimize inference performance. Vendors such as AWS, DeepSeek, Google, IBM, Microsoft, NVIDIA, Red Hat, Snowflake, and WRITER are driving advancements to enhance GenAI inference efficiency and sustainability. The document advises organizations to align inference strategies with use cases, regularly review costs, and partner with experts to ensure reliable, scalable AI deployment."Optimizing AI inference isn't just about speed," says Kathy Lange, research director, AI Software, IDC. "It's about engineering the trade-offs between cost, scalability, and sustainability to unlock the potential of generative AI in production, where innovation meets business impact."
Table of Contents
18 Pages
Executive Snapshot
Situation Overview
What Is AI Inference, and Why Is It Important?
Growing Demand for Efficient AI Inference
The GenAI Inference Infrastructure Stack
Factors That Influence GenAI Inference Performance
Model Compression Techniques
Data Batching Techniques
Caching and Memorization Techniques
Efficient Data Loading and Preprocessing
Reducing Input and Output Sizes
Parallelization
Model Routing
Which Software Platform Optimization Techniques Are Considered Most Effective?
Test-Time Compute (aka Inference-Time Compute)
An Emerging Field of Research
Technology Supplier Innovation
Advice for the Technology Buyer
Learn More
Related Research
Synopsis
Search Inside Report
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.