Report cover image

LLMOps Security & Compliance

Publisher HHeuristics
Published Oct 21, 2025
Length 23 Pages
SKU # HHE20489524

Description

As large language models (LLMs) scale across enterprises, the risks they introduce—from model leakage to adversarial prompt injection—demand a specialized discipline known as LLMOps Security. This report analyzes how organizations must integrate security frameworks across model training, deployment, and monitoring. It identifies the critical attack vectors unique to generative systems, including data exfiltration, hallucination manipulation, and dependency poisoning. The study highlights best practices for Secure-by-Design AI, emphasizing cryptographic safeguards, output filtering, and traceable lineage logging. It further explores alignment with regulatory frameworks such as the EU AI Act, NIST AI RMF, and ISO/IEC 23894:2023, positioning security as the core enabler of enterprise trust in GenAI.
Combines market and policy research from NIST, EU AI Act, and enterprise security surveys. Identifies key vendors providing secure LLM lifecycle management solutions and highlights early adoption by regulated sectors such as finance and healthcare.

Table of Contents

23 Pages
1. Executive Summary
2. LLM Threat Landscape Overview
3. Frameworks for LLM Security & Governance
4. Mitigating Model Leakage and Prompt Injection
5. Secure Deployment Architecture
6. Regulatory and Compliance Mapping
7. Strategic Recommendations

Search Inside Report

How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.