Report cover image

Artificial Intelligence in Cyber Defense

Publisher HHeuristics
Published Oct 21, 2025
Length 22 Pages
SKU # HHE20489495

Description

Evaluates AI’s role in next-gen cyber defense. Market to grow from $30.9 B (2025) to $93.7 B (2030). Explains AI for machine-speed response (XDR/SOAR), risk-based vulnerability management, and governance against adversarial ML.
Analysis draws from Cybersecurity Ventures 2025 Forecast, MITRE ATT&CK datasets, and NIST AI RMF 1.0 to quantify the impact of AI-driven defenses across government and enterprise environments. Market projections estimate that the global AI in cyber defense market will expand from USD 30.9 billion in 2025 to USD 93.7 billion by 2030, driven by the escalating frequency and automation of attacks. The study integrates data from industry threat reports (IBM, Palo Alto Networks, CrowdStrike) and defense sector studies, combining both technical analysis and economic modeling of AI deployment ROI in security operations. Evaluation includes 20+ vendor profiles with metrics on detection speed, response automation, and false positive reduction, highlighting leaders such as Darktrace, Check Point, and Microsoft. The findings emphasize a shift toward machine-speed defense, where AI enables preemptive detection, autonomous mitigation, and cross-domain intelligence sharing. The study also examines adversarial AI risks, addressing challenges such as model poisoning and data evasion attacks. As cyber operations increasingly depend on agentic AI systems, governance becomes critical—necessitating human-in-the-loop protocols and continuous assurance mechanisms to ensure accountability, resilience, and ethical deployment in both enterprise and national security contexts.

Table of Contents

22 Pages
1. Executive Summary
1.1. Overview of AI Integration in Cybersecurity
1.2. Key Findings and Global Market Outlook (2025–2030)
1.3. Evolution of Threat Vectors and Response Models
1.4. Strategic Importance of AI-Driven Security in Critical Infrastructure
2. Market Overview and Drivers
2.1. Global AI in Cyber Defense Market Size and Growth (2025–2030)
2.2. Key Drivers: Threat Volume, Sophistication, and Cost of Breaches
2.3. Regulatory Landscape and Compliance Requirements
2.4. Regional Insights: North America, Europe, and Asia-Pacific
2.5. Challenges: Talent Shortage, Data Privacy, and Ethical AI
3. Core Technologies in AI Cyber Defense
3.1. Machine Learning for Threat Detection and Anomaly Analysis
3.2. Natural Language Processing for Threat Intelligence and SOC Automation
3.3. Reinforcement Learning and Autonomous Defense Systems
3.4. Predictive Analytics for Risk-Based Vulnerability Management
3.5. Generative AI and the Rise of AI-Augmented Attacks
4. Use Cases and Applications
4.1. Endpoint Detection and Response (EDR/XDR)
4.2. Security Orchestration, Automation, and Response (SOAR)
4.3. Threat Intelligence Platforms (TIPs) and Behavioral Analytics
4.4. Adversarial AI and Red Team Simulations
4.5. AI in Government, Military, and National Defense Networks
5. Vendor Landscape and Competitive Analysis
5.1. Leading AI Cybersecurity Platforms: Darktrace, CrowdStrike, and Check Point
5.2. Emerging Innovators: Cybereason, SentinelOne, and Vectra AI
5.3. Cloud Security Leaders: Microsoft Defender, AWS GuardDuty, Google Chronicle
5.4. Startups and Research Initiatives in Defensive AI
5.5. M&A Trends and Strategic Alliances (2023–2025)
6. Market Forecasts and Strategic Outlook
6.1. Global Market Forecast by Segment and Region
6.2. Investment Trends and Funding Landscape
6.3. AI Governance and the Ethics of Autonomous Defense
6.4. Strategic Recommendations for CISOs and Security Architects
6.5. The Future of AI-Augmented Security Operations

Search Inside Report

How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.